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This paper concerns the mechanism design for online resource allocation in a strategic setting. In this setting,

a single supplier allocates capacity-limited resources to requests that arrive in a sequential and arbitrary

manner. Each request is associated with an agent who may act selfishly to misreport the requirement and

valuation of her request. The supplier charges payment from agents whose requests are satisfied, but incurs a

load-dependent supply cost. The goal is to design an incentive compatible online mechanism, which determines

not only the resource allocation of each request, but also the payment of each agent, so as to (approximately)

maximize the social welfare (i.e., aggregate valuations minus supply cost). We study this problem under the

framework of competitive analysis. The major contribution of this paper is the development of a unified

approach that achieves the best-possible competitive ratios for setups with different supply costs. Specifically,

we show that when there is no supply cost or the supply cost function is linear, our model is essentially a

standard 0-1 knapsack problem, for which our approach achieves logarithmic competitive ratios that match

the state-of-the-art (which is optimal). For the more challenging setup when the supply cost is strictly-convex,

we provide online mechanisms, for the first time, that lead to the optimal competitive ratios as well. To the

best of our knowledge, this is the first approach that unifies the characterization of optimal competitive ratios

in online resource allocation for different setups including zero, linear and strictly-convex supply costs.
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1 INTRODUCTION
We study the mechanism design for online resource allocation problems. A single supplier who

allocates capacity-limited resources (e.g., computing cycles, network bandwidth, energy, etc.) to

Authors’ addresses: Xiaoqi Tan, University of Toronto, 27 King’s College Cir, Toronto, ON, Canada, xiaoqi.tan@utoronto.ca;

Bo Sun, HKUST, Clear Water Bay, Kowloon, Hong Kong, China, bsunaa@connect.ust.hk; Alberto Leon-Garcia, University

of Toronto, 27 King’s College Cir, Toronto, ON, Canada, alberto.leongarcia@utoronto.ca; Yuan Wu, University of Macau,

Avenida da Universidade, Taipa, Macau, China; Danny H.K. Tsang, HKUST, Clear Water Bay, Kowloon, Hong Kong, China,

eetsang@ust.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2020/6-ART24 $15.00

https://doi.org/10.1145/3392142

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 24. Publication date: June 2020.

https://doi.org/10.1145/3392142
https://doi.org/10.1145/3392142


24:2 XIAOQI TAN et al.

requests that arrive in a sequential and arbitrary manner. We consider a strategic setting where

each request is owned by a self-interested agent who may deliberately misreport the resource

requirement and value of the request. A request is satisfied if the required resource is allocated to

the corresponding agent. The supplier charges payment from agents whose requests are satisfied,

and affords a supply cost which is a function of the total resource allocated. The goal is to design not

only the resource allocation of each request, but also the payment of each agent, so that agents are

well-incentivized to follow their true preferences (i.e., incentive compatible [34]) and meanwhile,

the social welfare (i.e., the aggregate value minus the supply cost ) can be approximately maximized.

A prominent application of this model is the market-based resource allocation in cloud computing

[26]. Here, the resource may represent computing cycles that can run at different speeds. Cloud

service providers charge money from customers who purchase their services
1
, but must pay a

considerable amount of power and cooling cost to maintain their data centers. Moreover, such

operational costs are often load-dependent and is usually an increasing function of the total resource

allocated (e.g., CPU). Another application of the investigated model may arise in the context of

network routing with congestion cost [4, 15, 16]. Each incoming user wants to own some pair of

connections with a valuation if any feasible connection is established. Congestion cost occurs when

a link is occupied by multiple users, and the cost can be modelled as a traffic-dependent increasing

function [2, 15]. The target is to maximize the total valuation of routed connections minus the

congestion cost. In reality, such congestion costs can either reflect the total energy needed to

support the network, or simply a virtual cost to penalize the degradation of the quality-of-service

(e.g., latency [4, 16]). The authors of [2] indicated that the power-rate curve for networking or

computing devices (e.g., CPU, communication links, and edge routers, etc) exhibit diseconomy-of-
scale properties (i.e., a convex curve), and thus polynomial functions are commonly used to model

the power requirements of the network [15].

Motivated by the above applications, this paper primarily focuses on setups when the supply

cost function is strictly-convex and differentiable, i.e., the marginal cost is strictly increasing. A

basic challenge for online resource allocation in such setups is as follows: if the limited resource is

allocated too aggressively, then an excessive portion of the resource may be allocated to earlier

requests with low values. This will increase the total cost for the supplier and thus increase the

payment for future agents, which will consequently prevent the later agents from purchasing the

resources even if their valuations are higher than the earlier ones. On the other hand, if the payment

is set too high, a majority of the requests may be declined, leading to a poor performance as well.

This paper aims to tackle this challenge by designing an online mechanism that leads to the best-

possible performance in social welfare. More importantly, our optimal results for strictly-convex

costs extend to setups with no supply cost (i.e., zero cost) or linear supply cost, leading to a unified

approach for online resource allocation with zero, linear or strictly-convex supply costs.

1.1 Related Results
Different variants of online resource allocation problems have been studied in both the non-strategic

setting, e.g., [5, 13, 19, 27, 38, 42], and the strategic setting, e.g., [7, 8, 11, 25, 39].

In the non-strategic setting, the main focus is to design online algorithms with a competitive

fraction of optimum. Classic problems in this stream of studies include online bipartite matching

[27], Adwords problems [19, 31, 32], online covering and packing problems [12, 13], online knapsack

1
In practice, major cloud service providers such as Amazon Web Services, Microsoft Azure, and Google Cloud often use

fixed pricing schemes. However, dynamic pricing is also adopted under some circumstances. For example, customers of

Amazon EC2 Spot Instances (https://aws.amazon.com/ec2/spot/) are charged based on spot prices that are adjusted in

real-time. Typically, the spot prices are determined based on multiple factors such as long-term trend in demand and supply

of spot instance capacity.
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problems [41, 42], and one-way trading problems [23]. For example, the authors of [32] introduced

the Adwords problem and characterized the optimal competitive ratio by assuming each bid is

much smaller than the total budget (i.e., the infinitesimal assumption). Similarly, the authors of [42]

proved that, when the weight of each item is much smaller than the capacity of the knapsack, and

the value-to-weight ratio of each item is bounded within [L,U ], no online algorithm can achieve a

competitive ratio tighter than 1 + ln(U /L). In addition to the above classic problems, new variants

of online resource allocation problems have also been reported, e.g., [5, 21, 28, 29]. For example,

a generalization of the online matching and Adwords problem was studied in [21], where each

incoming agent has a concave function representing the return or utility of this agent, in contrast

to the budgeted linear utility function studied by almost all previous online matching problems. In

particular, the authors of [21] derived a differential equation based on the primal-dual analysis,

and then characterized the optimal competitive ratio by analyzing the differential equation via

variations of calculus. Lin et al. [28] recently proposed an optimal online algorithm for a generalized

one-way trading problem, where the online decisions are made in each round to maximize the

per-round concave revenue function under inventory (budget) constraints. Recently, an extended

online matching problem was presented by [29], in which the items can be sold at multiple feasible

prices instead of a single price. Based on this setup, Ma et al. [29] designed an online algorithm with

the best-possible competitive ratios that depend on the sets of multiple prices given in advance.

In the strategic setting, agents are self-interested and thus a careful payment rulemust be designed

along with the online allocation algorithms so as to guarantee the incentive compatibility. A classic

problem in this setting is the online combinatorial auction (CA) problem, e.g., [6–8, 11, 25, 34].

Existing studies studying the online CAs focus on two cases: one is with stringent supply constraints

(i.e., limited supply) and the other is unlimited supply, namely, the supplier can produce as many

copies of items as possible with no cost. For example, the authors of [7] studied an online CA problem

and proposed anO(log(vmax/vmin))-competitive online algorithmwhen there are Ω(log(vmax/vmin))

copies of each item, where the customers’ valuation is assumed to be in the range of [vmin,vmax].

Considering the shortcomings of both the limited-supply case and the unlimited-supply case in

modelling real-world problems, Blum et al. [8] studied online CAs in a more general case with

increasing production cost. In this case, the supplier can produce additional number of items

while paying an increasing marginal cost per copy
2
. Blum et al. proposed a pricing scheme called

twice-the-index, and gave constant competitive ratios for simple marginal cost functions such as

linear and lower-degree polynomial. Huang et al. [25] later studied a similar problem and achieved

a tighter competitive ratio. In particular, for polynomial cost functions f (y) = ys , Huang et al.

[25] proved that an optimal s
s
s−1 -competitive online mechanism can be designed when each agent

buys infinitesimally small units of items. However, the optimal competitive ratio in [25] was

obtained without considering the capacity limits, and thus the results cannot capture how the

limited supply affects the optimal online mechanisms. Tan et al. [39] later studied this problem

with both polynomial supply costs f (y) = ys and stringent supply constraints. When the valuation-

to-demand ratio of agents (i.e., valuation divided by resource demand) are upper bounded by p̄,
Tan et al. [39] proved that the optimal competitive ratio s

s
s−1 which is firstly characterized by [25]

becomes non-achievable if p̄ exceeds a certain threshold. Moreover, this threshold depends on the

supply capacity. In this regard, the results in [25, 39] show that both the supply costs and the supply

constraints can influence the optimal competitive ratio.

2
The limited-supply case can be considered a special case of the model in [8] with a 0-to-∞ step function representing the

marginal supply cost.
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1.2 Our Contributions and Techniques
In this paper, we consider a significant generalization of the online resource allocation problem by

allowing arbitrary strictly-convex supply costs and stringent supply constraints. In this setting,

additional units of resources can be supplied at strictly-increasing marginal costs, and the total

resource allocated must stay within the capacity limit. To the best of our knowledge, characterizing

the optimal competitive ratios in such settings is an open question. This paper fills this gap and

proposes an optimal online mechanism with the best-possible competitive ratios. Meanwhile, for

some special cases when the supply costs are not strictly-convex, e.g., zero and linear supply cost,

we prove that our design still holds (with some minor modifications) and achieves logarithmic

competitive ratios which have been proven as optimal by existing literature. Therefore, our proposed

approach unifies the characterization of optimal competitive ratios in online resource allocation

for different setups including zero, linear and strictly-convex supply costs.

Close to our work is the design of online primal-dual algorithms, e.g., [5, 12, 13, 20, 21, 24, 25, 29]

(in particular, see [14] for a comprehensive survey). The key is to construct a dual feasible objective

that is close to the primal feasible objective at each round when there is a new arrival of agent,

and then use weak duality to bound the performance of the online algorithm. In this paper, the

construction of feasible primal and dual solutions is based on a universal monotone “pricing

function", denoted by ϕ, which is designed by solving an ordinary differential equation (ODE) [3].

Unlike techniques adopted by [21, 25, 29], our derived ODE contains two boundary conditions

imposed by the supply constraints, and thus is essentially a two-point boundary value problem

(BVP) [1, 3, 35]. We prove that the existence of any α-competitive algorithm is equivalent to the

existence of a strictly-increasing solution to the BVP, for which the uniqueness and existence

conditions are rigorously proved. To the best of our knowledge, this is the first time that the design

and analysis of online algorithms are based on the existence and uniqueness of solutions to BVPs

parameterized by the competitive ratios. We believe that our proposed design principle sheds light

on new directions for solving other online optimization problems.

2 PROBLEM SETUP
In this section, we present the problem setup with the resource allocation model, and then introduce

the assumptions and definitions that will be used in our online mechanism design.

2.1 The Model
We consider a single supplier who allocates a single type of resource to a set of requests N =

{1, · · · ,N }. Each requestn ∈ N is owned by an agent (which is also indexed byn for simplicity), and

can be represented by a private type θn =
(
rn ,vn

)
, where rn represents the resource requirement

and vn denotes the valuation of agent n if the request is satisfied. In practice, we can interpret vn
as the willingness-to-pay of agent n for obtaining the required resource.

Let us define a binary variable xn = {0, 1} for each request n ∈ N , and assume xn = 1 if request

n is satisfied and xn = 0 otherwise. We assume that agents have quasi-linear utilities [34], i.e., the

utility of agent n is denoted by Un = vnxn − πn , where πn denotes the payment made by agent

n. Intuitively, agents whose requests are not satisfied make zero payment, i.e., πn = 0 if xn = 0.

The supplier collects payment πn from agent n, and pays a total supply cost of f (
∑

n rnxn), where∑
n rnxn denotes the total resource allocated and f represents the supply cost function. Therefore,

the utility of the supplier (i.e., the profit) can be denoted by Us =
∑

n∈N πn − f (
∑

n rnxn). We

consider limited supply with a stringent capacity limit. Without loss of generality, we normalize

the capacity limit to be 1, and thus

∑
n rnxn ≤ 1. Meanwhile, the requirements {rn}∀n denote the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 24. Publication date: June 2020.
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proportions of the normalized capacity limit accordingly. Our mechanism design relies on some

properties of the cost function f , which is discussed later in Section 2.2.

We focus on social welfare maximization in an online setting, where agents arrive one-by-one

in a sequential and arbitrary manner, breaking ties arbitrarily. We denote the sequence of agent

arrivals by A ≜ (θ1,θ2, · · · ,θN ), where we assume without loss of generality that the arrival

times are in ascending order. In the following we refer to A as the arrival instance. If we assume

a complete knowledge of A, then the social welfare maximization in the offline setting can be

written as follows:

maximize

{xn }∀n

∑
n∈N

vnxn − f

(∑
n∈N

rnxn

)
(1a)

subject to

∑
n∈N

rnxn ≤ 1, (1b)

xn = {0, 1},∀n ∈ N . (1c)

In Problem (1), the objective is the aggregate utilities of all the agents and the supplier, where the

payment terms cancel out.

Remark 1. If there is no supply cost, i.e., f = 0, then Problem (1) is a standard 0-1 knapsack problem
[42]. Meanwhile, if we consider allocation of bundles of resources with a supply cost function for each
type of resource, Problem (1) can be extended to model the standard online combinatorial auction
problem [8, 34]. Therefore, the studied model is a generalization of a variety of classic online resource
allocation problems. In this paper, we mainly focus on the basic model presented by Problem (1). For
discussions of extending our model to consider multiple types of resources, as well as generalizing
Problem (1) to model online resource allocation with multiple time slots (e.g., job scheduling in cloud
computing), please refer to Section 5.3.2.

2.2 Assumptions
We make the following assumptions throughout the paper.

Assumption 1. For each request n ∈ N , the valuation density, defined as vn/rn , is lower and upper
bounded as follows:

¯

p ≤
vn
rn

≤ p̄,∀n ∈ N . (2)

Assumption 1 is similar to the one in [7, 29, 42]. Specifically, one can interpret

¯

p as the lowest

selling price per unit of resource, which is set by the supplier in advance. Thus, the request of

any agent with a valuation density lower than

¯

p will automatically be rejected. In comparison, the

upper bound p̄ can be considered an inherent attribute of the arrival instance with rational agents,

and in reality it exists naturally.

Assumption 2. The resource requirement of each request is very small compared to the total
capacity limit, i.e., rn ≪ 1,∀n ∈ N .

Assumption 2 is common in designing online algorithms, e.g., [21, 25, 32, 42], since it allows us

to focus on the infinitesimal nature of our problem with mathematical convenience. Meanwhile,

Assumption 2 is reasonable in many real-world large-scale systems.

Definition 1 (Information Setup). We define all the information known to the supplier a priori
as a setup S, denoted by

S ≜ { f ,
¯

p, p̄}. (3)
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In the following, we say S is a nice setup if f is monotonically non-decreasing with zero startup

cost (i.e, f (0) = 0) and satisfies f ′(0) <
¯

p ≤ p̄. Meanwhile, we refer to a nice setup S as a convex
setup if f is also strictly-convex and differentiable. Given a nice setup S, the supplier only knows

the information given by S, and does not know anything about the arrival instance A such as the

total number of requests (i.e., N ).

2.3 Definitions
Below we give some definitions regarding incentive compatibility, online mechanisms, and compet-

itive ratios.

(Incentive Compatibility) We consider the design of direct revelation mechanisms under a

strategic setting, where each agent n ∈ N participates by declaring the type
ˆθn = (r̂n , v̂n) at time

ân . Since agents are self-interested, the reported preference
ˆθn of agent n ∈ N may or may not

be her true preference θn . A mechanism is incentive compatible (IC) if all agents achieve the best
outcomes (i.e., the maximum utilities) by acting according to their true preferences.

(Online Mechanism) Given a convex setup S, we aim to design an IC online mechanism to

(approximately) maximize the social welfare. In the online setting, agents arrive one-by-one in

a sequential order (where ties are broken arbitrarily). At each round when there is a new arrival

of agent n ∈ N , the supplier needs to make two types of irrevocable decisions as follows: i) the

allocation rule, namely the decisions about whether request n should be satisfied or not (i.e., xn);
and ii) the payment rule, namely, how much money should be charged from agent n if the request

is satisfied. The resource allocation rule and the payment rule constitute an online mechanism. In

the strategic setting, agents may deliberately misreport their type information to be better off, and

thus the supplier needs to carefully design the payment rule such that agents are well-incentivized

to follow their true preferences
3
.

(Competitive Ratio) The performance of an onlinemechanism can be quantified by the standard

competitive analysis framework [9]. Given an arrival instance A, let us denote the optimal social

welfare by Soffline(A), which is the optimal objective value of Problem (1) in the offline setting. Let

Sonline(A) denote the social welfare achieved by an online mechanism based on the knowledge of

S only. The competitive ratio of an online mechanism is defined as

α ≜ max

all possible A

Soffline(A)

Sonline(A)
, (4)

where α ≥ 1 and the closer to 1 the better. Note that in the online setting the supplier does not

known any future information except S, and thus the competitive ratio α should depend on S only.

Our target is to design an IC online mechanism such that Sonline(A) is as close to Soffline(A) as

possible for all possible A’s, namely, an online mechanism with an competitive ratio that is as

small as possible. To define how small the competitive ratio could possible be, we give the following

definition regarding the optimal competitive ratio for a given nice setup S.

Definition 2 (Optimal Competitive Ratio). A competitive ratio is optimal if no other online
algorithms can achieve a smaller one under Assumption 1 and Assumption 2. In particular, given a
nice setup S, the optimal competitive ratio α∗(S) is defined as

α∗(S) ≜ inf max

all possible A

Soffline(A)

Sonline(A)
, (5)

where the inf operator is taken w.r.t. all possible online algorithms.

3
In a non-strategic environment, only an allocation rule is needed, and thus in this case an online mechanism is simply an

online algorithm.
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3 ONLINE MECHANISM DESIGN
This section presents our proposed online mechanism. We start by giving some preliminaries and

notations regarding the primal and dual of Problem (1), and then describe the design principle and

design procedures of our online mechanism.

Table 1. Notations

Symbol Description

vn value of agent n
xn binary decision variable of agent n
rn resource requirement of agent n
f supply cost function

¯

p (p̄) lower (upper) bound of vn/rn

¯

c (c̄) minimum (maximum) marginal cost

¯

ρ (ρ̄) maximum resource utilization when
vn
rn
=

¯

p (p̄), ∀n
ϕ(y) pricing function with three segments

φ(y) increasing segment of ϕ(y) when y ∈ [ω, ρ̄]
ω resource utilization threshold so that ϕ(ω) =

¯

c
u resource utilization threshold so that ϕ(u) = c̄
π̂n final payment made by agent n
p̂n posted price for agent n + 1

ŷn total resource utilization after agent n

3.1 Preliminaries
We first introduce some notations to help derive the dual of Problem (1). Given a convex setup S,

we define

¯

c and c̄ as follows:

¯

c ≜ f ′(0), c̄ ≜ f ′(1), (6)

where

¯

c and c̄ denote the minimum and maximummarginal cost, respectively. Based on the capacity

limit, we define the extended cost function ¯f (y) as follows:

¯f (y) =

{
f (y) if y ∈ [0, 1],

+∞ if y ∈ (1,+∞),
(7)

which extends the domain of f (y) to all y ∈ [0,+∞). Based on the extended cost function
¯f , we

define Fp (y) as follows:

Fp (y) ≜ py − ¯f (y),y ∈ [0,+∞), (8)

which represents the profit of sellingy units of resources at price p, where py represents the revenue

and
¯f (y) represents the supply cost. In the following, Fp (y) is referred to as the profit function.

(Relaxed Primal Problem) Our online mechanism is designed based on a principled primal-

dual analysis of Problem (1). We consider the following relaxed welfare maximization problem

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 24. Publication date: June 2020.
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maximize

x ,y

∑
n∈N

vnxn − ¯f (y) (9a)

subject to

∑
n∈N

rnxn ≤ y, (p) (9b)

xn ≤ 1,∀n ∈ N , (γn) (9c)

x ≥ 0,y ≥ 0, (9d)

where x = {xn}∀n . In Problem (9), (p,γn) are the Lagrange multipliers associated with the corre-

sponding constraint.

When f is non-decreasing, Problem (9) is equivalent to Problem (1) except the relaxation of

{xn}∀n . The reason is as follows. First, compared to the original cost function f with the capacity

limit constraint (1b), the introduction of
¯f in Problem (9) is an equivalent transformation. Second,

the relaxation of the equality constraint (1b) to an inequality one in Eq. (9b) is lossless since the

inequality will always be binding when f is non-decreasing.

(Dual Problem) Problem (9) is a continuous optimization problem, whose dual can be expressed

as follows:

minimize

p,γ

∑
n∈N

γn + h (p) (10a)

subject to γn ≥ vn − prn ,∀n ∈ N , (10b)

p ≥ 0,γ ≥ 0, (10c)

where γ = {γn}∀n . We interpret p as the price per unit of resource, and γn as the utility of agent n.
In Eq. (10a), h(p) is given by

h(p) = max

y≥0

py − ¯f (y) = max

y≥0

Fp (y), (11)

which can be written as follows:

h(p) =

{
Fp

(
f ′−1(p)

)
if p ∈ [

¯

c, c̄],

Fp
(
1

)
if p ∈ (c̄,+∞).

(12)

The above function h(p) is known as the convex conjugate of
¯f [10]. An economic interpretation

of Eq. (11) is that h(p) represents the optimal profit when the selling price is p, where py represents

the revenue and
¯f (y) represents the supply cost. In this regard, the dual objective in Eq. (10a) is the

aggregate utilities of all the agents plus the utility of the supplier (i.e., the profit). In comparison,

the primal objective in Eq. (9) is the aggregate values of all the satisfied requests minus the supply

cost. Both of them represent the social welfare of the system.

Given an arrival instance A, let us denote the optimal primal objective of Problem (9) by P∗(A).

Similarly, denote by D∗(A) the optimal dual objective of Problem (10). Then, we have

Soffline(A) ≤ P∗(A) ≤ D∗(A), (13)

where the first inequality is due to the relaxation of {xn}∀n and the second one is because of weak

duality
4
.

4
Note that when f is convex, strong duality holds here, i.e., P∗(A) = D∗(A). However, throughout the paper we do not

need the strong duality.
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3.2 Design Principles
In the online setting, we need to process agents in a sequential manner. For a given arrival instance

A, after processing the n-th request, we denote the objective values of Problem (9) and Problem (10)

by Pn(A) and Dn(A), respectively. For simplicity, we drop the parenthesis and simply write Pn and

Dn hereinafter. Meanwhile, we say that Pn (Dn) is feasible if Pn (Dn) is a feasible objective value of

Problem (1) (Problem (10)) after processing the n-th request. Proposition 3.1 below shows that if

the sequences of {Pn}∀n and {Dn}∀n are feasible and satisfy a group of inequalities parameterized

by α , then the corresponding online algorithm is guaranteed to be α-competitive.

Proposition 3.1. An online algorithm is α -competitive if the following two conditions are satisfied,
namely, i) the sequences of {Pn}∀n and {Dn}∀n are feasible, and ii) there exists an index k ∈ N such
that the following inequalities hold{

Pk ≥ 1

α Dk ,

Pn − Pn−1 ≥ 1

α (Dn − Dn−1) ,∀n ∈ {k + 1, · · · ,N }.
(14)

Proof. The feasibility of {Pn}∀n is trivial since any online algorithm must first produce a feasible

solution to the original problem in Eq. (1). We next show how the feasibility of {Dn}∀n and the

inequalities in Eq. (14) lead to an α-competitive online algorithm. Note that it suffices to prove

PN ≥ 1

α DN since

Sonline = PN ≥
1

α
DN

(i)
≥

1

α
D∗

(ii)
≥

1

α
P∗

(iii)
≥

1

α
Soffline, (15)

where inequalities (ii) and (iii) directly follow Eq. (13), and inequality (i) holds sinceDN is a feasible

objective value of Problem (10), while D∗ is the optimum (minimum).

Suppose there exists an index k ∈ N such that the second inequality in Eq. (14) hold for all

n ∈ {k + 1, · · · ,N }, then

PN − Pk =
N∑

n=k+1

(Pn − Pn−1) ≥
1

α

N∑
n=k+1

(Dn − Dn−1) =
1

α
(DN − Dk ),

which leads to PN ≥ 1

α DN after substituting Pk ≥ 1

α Dk into the above equation. We thus complete

the proof. □

We refer to the first inequality in Eq. (14) as the initial inequality, and the second one in Eq. (14) as
the incremental inequality. Note that when P0 = D0 = 0 and k = 1, the two types of inequalities can

be combined. Proposition 3.1 in this case simply follows the standard online primal-dual approach

[14]. In this regard, Proposition 3.1 is a more general principle for designing online algorithms.

3.3 Posted Price Mechanism
Our online mechanism is designed based on Proposition 3.1. The key idea is to construct a set of

feasible primal and dual solutions at each round when there is a new arrival of request n ∈ N , and

then guarantee that the resulting sequences of {Pn}∀n and {Dn}∀n satisfy the inequalities in Eq.

(14).

(A Two-Step Design) Note that the dual variables {γn}∀n in Problem (10) are associated with

each individual agent, while p is a global one couples all the agents. Once the final price p is known

to the supplier, we can easily decouple different agents and design feasible primal and dual solutions

for each individual request n ∈ N . However, when there is no future information, it is impossible

to know the exact value of p a priori. Our idea is to adopt a two-step design procedures as follows:
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• Step-1: design a trajectory of {p̂n}∀n , where p̂n denotes the supplier’s prediction of the final

price p after processing agent n.
• Step-2: when there is a new arrival of request n ∈ N , based on p̂n−1, perform the following

decision-making:

– Set the dual variable γ̂n by

γ̂n = max

{
vn − p̂n−1rn , 0

}
,∀n ∈ N . (16)

– Set the primal variable x̂n by:

x̂n =

{
0 if vn − p̂n−1rn < 0,

1 if vn − p̂n−1rn ≥ 0 and ŷn−1 + rn ≤ 1,

where ŷn−1 denotes the total resource utilization after processing agent n − 1. Intuitively,

we have ŷ0 = 0.

– Set the final payment π̂n for agent n by

π̂n = p̂n−1rnx̂n , (17)

– Update the total resource utilization by

ŷn = ŷn−1 + rnx̂n . (18)

Based on the above two-step design procedure, the terminal value of the total resource utilization

is ŷN , and the terminal value of the predicted final price is p̂N . Together with {x̂n}∀n and {γ̂n}∀n ,
these variables constitute a complete set of online primal and dual solutions, which are denoted by

VP andVD as follows:

VP ≜ ({x̂n}∀n , ŷN ) ,VD ≜
(
p̂N , {γ̂n}∀n

)
.

Note that to differentiate between offline and online settings, we place a hat on top of variables

that denote the decisions made online.

(Pricing Function in Step-1) To enable an online implementation, the price predictions in

Step-1 must be performed based on causal information only. One natural way of designing such

price predictions (without future information) is to relate p̂n to the current total resource utilization

as follows:

p̂n = ϕ (ŷn) ,∀n ∈ N , (19)

where ŷn denotes the total resource utilization after allocating the required resources to request

n. Based on our interpretation of p̂n , ϕ is referred to as the pricing function hereinafter. Eq. (19)

indicates that our prediction of the final price will be updated whenever the total resource utilization

changes.

(Posted Price Mechanism: PMϕ ) The above two-step design indicates that the pricing function

ϕ plays an important role in influencing VP and VD , as well as the sequences of {Pn}∀n and

{Dn}∀n . Therefore, the design of ϕ is directly related to the inequalities in Proposition 3.1, and

thus determines the competitive ratio of the online mechanism described above. The techniques of

how to design ϕ in Step-1 constitute the major results of this paper, and the details are deferred

to Section 4. In the following, we temporarily assume that the pricing function ϕ is given and

summarize our proposed online mechanism in Algorithm 1, dubbed PMϕ .

An interesting observation about PMϕ is that it can be implemented in a posted price manner.

Unlike auctions [18, 34, 37], the supplier running posted price [22, 40] simply publishes the selling

price (i.e., line 4) and does not collect any information from the agents. The decisions are made

by each individual agent in the manner of take-it-or-leave-it (i.e., line 5-line 14). By virtue of

posted-price mechanisms [17, 22, 40], PMϕ is IC, privacy-preserving and computationally-efficient.
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Therefore, we argue that this is an extra advantage of our design, although we do not commit to

posted price mechanisms a priori.

Algorithm 1: Posted Price Mechanism (PMϕ )

1: Inputs: A given setup S = { f ,
¯

p, p̄} and ϕ.

2: Initialize: ŷ0 = 0 and p̂0 = ϕ(ŷ0).

3: while a new agent n arrives do
4: Supplier publishes the price p̂n−1.

5: if vn − p̂n−1rn < 0 then
6: Agent n leaves (i.e., set x̂n = 0)

7: else if ŷn−1 + rn > 1 then
8: Request n is rejected (i.e., set x̂n = 0)

9: else
10: Request n is satisfied (i.e., set x̂n = 1)

11: Collect the payment π̂n by Eq. (17).

12: Update the total resource utilization by Eq. (18).

13: Update the price by p̂n = ϕ(ŷn).
14: end if
15: end while

(Feasibility and Rationality of PMϕ ) As shown by Proposition 3.1, the feasibility ofVP and

VD is crucial to prove the competitive ratio of the designed online mechanism. In Proposition 3.2

below, we show that our above design of VP andVD is feasible as long as ϕ is monotone.

Proposition 3.2. The primal solutions inVP are always feasible to Problem (1) and Problem (9).
The dual solutions in VD are feasible to Problem (10) as long as ϕ is monotonically non-decreasing.

Proof. It is obvious that the design of ({x̂n}∀n , ŷN ) inVP are feasible to Problem (1). For each

agent n ∈ N , our design of γ̂n in Eq. (16) indicates that γ̂n ≥ vn − p̂n−1rn . If ϕ is non-decreasing, we

have p̂n−1 ≤ p̂n ≤ p̂N ,∀n ∈ N . Therefore, we have γ̂n ≥ vn − p̂N rn holds for all n ∈ N . We thus

complete the proof. □

Before leaving this section, it is worth mentioning that in economics and game theory [30, 34],

our design of a dual feasible γ̂n in Eq. (16) is known to guarantee the individual rationality of the

mechanism, namely, no agent suffers from negative utility by participating in the mechanism (i.e.,

line 6 in Algorithm 1). Note that the individual rationality is also equivalent to saying that no agent

is forced to participate in the mechanism.

4 MAIN RESULTS AND TECHNIQUES
Proposition 3.2 shows that our previous design ofVP andVD is feasible if the pricing function ϕ is

monotone. In this section, we present our major results regarding Step-1, namely, the design of a

monotone pricing function ϕ so that PMϕ achieves a competitive performance in social welfare.

4.1 Sufficient Conditions
To aid our following presentation, let us define

¯

ρ and ρ̄ as follows:

¯

ρ ≜ arg max

y≥0
¯

py − ¯f (y), ρ̄ ≜ arg max

y≥0

p̄y − ¯f (y). (20)
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For a convex setup when
¯f (y) is strictly-convex and differentiable in y ∈ [0, 1],

¯

ρ and ρ̄ can be

respectively written as:

¯

ρ =

{
f ′−1

(
¯

p
)

if

¯

p ∈ (
¯

c, c̄),

1 if

¯

p ≥ c̄,
; ρ̄ =

{
f ′−1 (p̄) if p̄ ∈ (

¯

c, c̄),

1 if p̄ ≥ c̄ .

The definitions of

¯

ρ and ρ̄ can be interpreted as follows. Suppose there are infinitely-many identical

agents whose valuation densities are all

¯

p (p̄), then the maximum (optimal) resource utilization

level is

¯

ρ (ρ̄). Both
¯

ρ and ρ̄ are capped by 1 due to the capacity limit.

Based on the above definitions of

¯

ρ and ρ̄, we next give Theorem 4.1 which shows the sufficient

conditions for ϕ so that PMϕ is IC and achieves a bounded competitive ratio.

Theorem 4.1. Given a convex setup S, PMϕ is IC and α-competitive if ϕ is given by

ϕ(y) =


¯

p if y ∈ [0,ω),

φ(y) if y ∈ [ω, ρ̄],

+∞ if y ∈ (ρ̄,+∞),

(21)

where ω is a resource utilization threshold that satisfies

F
¯

p (ω) ≥
1

α
h
(
¯

p
)
and 0 ≤ ω ≤

¯

ρ, (22)

and φ(y) is an increasing function that satisfies{
φ ′(y) ≤ α ·

φ(y)−f ′(y)
h′(φ(y)) ,y ∈ (ω, ρ̄);

φ(ω) =
¯

p,φ(ρ̄) ≥ p̄.
(23)

In Eq. (22), F
¯

p is the profit function defined in Eq. (8) and h is given by Eq. (11). In Eq. (23), h′ represents
the derivative of h.

Theorem 4.1 shows that PMϕ with any pricing function given by Eq. (21) is IC and α-competitive,

provided thatω andφ satisfy certain conditions. The sufficient conditions in Theorem 4.1 are derived

based on Proposition 3.1. In particular, Eq. (22) and Eq. (23) correspond to the initial inequality and

the incremental inequality in Eq. (14), respectively. A rigorous proof is given in Appendix A, while

discussions of intuitions are given in Section 5.

We note that a pricing function ϕ given by Eq. (21) consists of three segments, namely, the flat-
segment [0,ω], the increasing-segment [ω, ρ̄], and the infinite-segment (ρ̄,+∞). Since ω is a resource

utilization threshold that separates the first two segments, and plays a critical role in shaping the

curvature of ϕ, we refer to ω as the critical threshold hereinafter. Recall that the valuation densities

of all the agents are lower bounded by

¯

p, and thus the incoming requests will always be satisfied

when the total resource utilization is below ω, regardless of their valuations.

4.2 Necessary Conditions
An interesting result proved by this paper is as follows: existence of a pricing function given by Eq.

(21) is not only sufficient to guarantee a bounded competitive ratio for PMϕ , but also necessary to

the existence of any α-competitive online algorithm. The result is given by the following Theorem

4.2.

Theorem 4.2. Given a convex setup S, if there exists an α -competitive online algorithm, then there
must exist a critical thresholdω which satisfies Eq. (22) so that the following claims hold simultaneously:

• There exists a case when the total resource utilization is ω and all the accepted agents have the
same valuation density

¯

p.
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• There exists a strictly-increasing functionψ (p) that satisfies{
ψ ′(p) = 1

α ·
h′(p)

p−f ′(ψ (p)) ,p ∈ (
¯

p, p̄),

ψ (
¯

p) = ω,ψ (p̄) ≤ ρ̄.
(24)

• There exists a strictly-increasing function φ(y) that satisfies

BVP(ω,α)

{
φ ′(y) = α ·

φ(y)−f ′(y)
h′(φ(y)) ,y ∈ (ω, ρ̄),

φ(ω) =
¯

p,φ(ρ̄) ≥ p̄.
(25)

• ψ and φ are inverse to each other, i.e.,ψ = φ−1 or φ = ψ−1.

Proof. The proof of this theorem is based on constructing a resource utilization level ω and a

strictly-increasing function ψ for any α-competitive online algorithm under two special arrival

instances. The complete proof is deferred to Appendix B. □

The first necessary condition in Theorem 4.2 argues that the existence of a critical threshold ω is

directly related to the existence of any α-competitive algorithm. Therefore, selling the resource

at the lowest price

¯

p during [0,ω] is necessary for PMϕ to achieve a bounded competitive ratio.

Meanwhile, the value of the critical threshold ω must stay within a certain range defined by Eq.

(22).

The second and the third conditions in Theorem 4.2 are related to ODEs with two boundary

conditions, which are often termed as first-order two-point BVPs in mathematics [3, 36]. For a given

setup, Eq. (25) is related to the critical threshold ω and the competitive ratio α , and thus we refer to
Eq. (25) by BVP(ω,α) hereinafter. Note that BVP(ω,α) is equivalent to Eq. (23) after enforcing the

equality of the differential inequality. Meanwhile, the sufficient conditions in Theorem 4.1 only

require an increasing φ that satisfies Eq. (23), while a strictly-increasing φ is needed in Theorem

4.2 to guarantee the existence of an arbitrary α-competitive online algorithm.

(Principles of Optimal Design) Based on Theorem 4.2, if we can find a competitive ratio

parameter α such that

• for some ω that satisfies Eq. (22), we can find a strictly-increasing solution to BVP(ω,α);
• for allω that satisfies Eq. (22), there exists no strictly-increasing solution to BVP(ω,α −ϵ), ∀ϵ > 0,

then this α must be the optimal (minimum) competitive ratio achievable by all online algorithms
5
.

In the next two subsections, we use this principle to characterize the optimal competitive ratios for

different setups.

4.3 Optimal Designs for Convex Setups
Theorem 4.3 below characterizes the design of a pricing function to achieve the optimal competitive

ratio for a given convex setup.

Theorem 4.3. Given a convex setup S, there exists a unique optimal critical threshold ω∗ so that
the following claims hold:

• The optimal competitive ratio α∗(S) is given by

α∗(S) =
h
(
¯

p
)

F
¯

p (ω∗)
=


¯

pf ′−1(
¯

p)−f (f ′−1(
¯

p))

¯

pω∗−f (ω∗)
if

¯

p ∈ (
¯

c, c̄),

¯

p−f (1)

¯

pω∗−f (ω∗)
if

¯

p ∈ [c̄,+∞).
(26)

5
Note that the same design principle can also be applied for the BVP in Eq. (24). Here, we choose to deal with BVP(ω, α )
because in the following we need to compute φ as part of our pricing function ϕ .
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• There exists a unique optimal pricing function ϕ∗ given by

ϕ∗(y) =


¯

p if y ∈ [0,ω∗),

φ∗(y) if y ∈ [ω∗, ρ̄],

+∞ if y ∈ (ρ̄,+∞),

(27)

so that PMϕ∗
is IC and α∗(S)-competitive. In Eq. (27), φ∗ is the unique strictly-increasing solution

to BVP(ω∗,α∗(S)).

Theorem 4.3 illustrates our major results regarding the convex setup, namely, the existence and

uniqueness of the optimal pricing function ϕ∗ so that PMϕ∗
achieves the optimal competitive ratio

α∗(S). The proof of Theorem 4.3 is based on analyzing the solution structures of BVP(ω,α), and the
details are given in Section 6. We emphasize that Theorem 4.3 shows the existence and uniqueness

of the optimal critical threshold ω∗ without discussing how to quantify it. For the details about

how to calculate ω∗, please refer to Theorem 6.3 in Section 6 as well.

Corollary 4.4. Given a convex setup S, we have:
• α∗(S) is strictly decreasing in

¯

p ∈ (
¯

c, p̄] for a given p̄ ∈ (
¯

c,+∞).
• α∗(S) is strictly increasing in p̄ ∈ [

¯

p,+∞) for a given
¯

p ∈ (
¯

c,+∞).
• α∗(S) = 1 and ω∗ =

¯

ρ when
¯

p = p̄ ∈ (
¯

c,+∞).

In Eq. (26), α∗(S) explicitly depends on f and

¯

p, and implicitly depends on p̄ through the optimal

critical threshold ω∗. This leads to the monotonicity of α∗(S) w.r.t. to
¯

p and p̄ in Corollary 4.4. In

particular, the third bullet in Corollary 4.4 can be interpreted as follows: when

¯

p = p̄ ∈ (
¯

c,+∞), the

agents are identical in terms of their valuation densities, and thus it makes no difference to know

all the future arrival information, i.e., α∗(S) = 1. The proof of Corollary 4.4 is deferred to Appendix

H.

Before leaving this subsection, we give the following remark regarding the uniqueness of ϕ∗.

Remark 2 (Uniqeness). We emphasize that the property of uniqueness in Theorem 4.3 does not
mean that there exists only one α∗(S)-competitive online mechanism/algorithm. Instead, Theorem 4.3
only argues that PMϕ∗

can achieve the optimal competitive ratio α∗(S) with a unique pricing function
ϕ∗.

4.4 Optimal Designs for Linear Supply Costs
For a given convex setup S, Theorem 4.3 shows that the optimal competitive ratio α∗(S) and the

optimal pricing function ϕ∗ are directly related to the optimal critical threshold ω∗. It is worth

emphasizing that ω∗ is a design parameter which cannot be given in analytical forms, so does

ϕ∗ (in fact, f itself is arbitrary, and thus this is not surprising). Nevertheless, for some special

cost functions, Corollary 4.5 below shows that logarithmic competitive ratios can be obtained via

analytical designs of ϕ∗ and ω∗.

Corollary 4.5. Given a nice setup S = { f ,
¯

p, p̄}, if the cost function f (y) = qy, where q ≥ 0, then
there exists a unique pricing function ϕ∗ given by

ϕ∗(y) =


¯

p if y ∈ [0,ω∗),(
¯

p − q
)
· exp (y/ω∗ − 1) + q if y ∈ [ω∗, 1],

+∞ if y ∈ (1,+∞),

(28)

such that PMϕ∗
is IC and α∗(S)-competitive, where α∗(S) is given by

α∗(S) = 1 + ln

( p̄ − q

¯

p − q

)
.
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In Eq. (28), the optimal critical threshold ω∗ =
1

α∗(S)
.

We note that the logarithmic competitive ratios in Corollary 4.5 are not new and have been

discussed in the literature, e.g., [42]. Based on [42], such logarithmic competitive ratios are optimal,

unless extra assumptions are introduced. Here, based on our above sufficient and necessary condi-

tions for convex setups, we provide new proofs, which are simple and intuitive, for the results in

Corollary 4.5. The details about the proof are deferred to Appendix C.

Summarizing our results in Theorem 4.3 and Corollary 4.5, we argue that PMϕ is a unified

mechanism for online resource allocation with or without supply costs. In particular, we obtain

optimal competitive ratios for different setups including zero cost (i.e, without supply cost, which

corresponds to q = 0 in Corollary 4.5), linear cost, and strictly-convex cost.

5 INTERPRETATION, INTUITION AND GENERALIZATION OF THEOREM 4.1
In this section, we give a geometric interpretation of Theorem 4.1 and discuss the intuitions of our

geometric interpretation via worst-case analysis. We also show that the sufficient conditions in

Theorem 4.1 can be generalized in multiple directions.

5.1 A Geometric Interpretation of Theorem 4.1
Since ϕ(ρ̄) = φ(ρ̄) ≥ p̄, the highest-possible resource utilization level under PMϕ is ϕ−1(p̄). Let us
denote the final resource utilization level under PMϕ by ρ ∈ [0,ϕ−1(p̄)]. Intuitively, if ρ ∈ [0,ω],
then the decisions made by PMϕ and its offline counterpart are the same as long as ϕ has the

flat-segment [0,ω], namely, both are to satisfy all the requests. Hence, if ρ ∈ [0,ω], the competitive

ratio of PMϕ is 1. We next focus on the more general case when ρ ∈ [ω,ϕ−1(p̄)].
For any ρ ∈ [ω,ϕ−1(p̄)], let us denote the final price by p = ϕ(ρ). The pricing function ϕ(y)

satisfying Eq. (23) indicates that for any given ρ ∈ [ω,ϕ−1(p̄)], we have∫ ρ

ω
(ϕ(y) − f ′(y))dy ≥

∫ p

¯

p

1

α
h′ (ϕ(y))dϕ(y). (29)

Meanwhile, based on Eq. (22), we have

F
¯

p (ω) =
¯

pω − f (ω) ≥
1

α
h(

¯

p), (30)

where F
¯

p (ω) is the profit function defined by Eq. (8). The combination of Eq. (29) and Eq. (30) leads

to the following condition

¯

pω +

∫ ρ

ω
ϕ(y)dy − f (ρ) ≥

1

α
h(ϕ(ρ)). (31)

Eq. (31) must hold for all possible ρ’s, i.e., all ρ ∈ [ω,ϕ−1(p̄)], and thus we have the following

expression of α :

α = max

ρ ∈[ω,ϕ−1(p̄)]

h(ϕ(ρ))

¯

pω +
∫ ρ
ω ϕ(y)dy − f (ρ)

. (32)

To illustrate the geometric meaning of Eq. (32), let us assume p̄ ≥ c̄ for simplicity. We illustrate the

geometric interpretation of Eq. (32) in Fig. 1. Specifically, Fig. 1(a) shows the case whenp = ϕ(ρ) ≤ c̄ ,
i.e., ρ ∈ [ω,u], where u is a resource utilization level such that ϕ(u) = c̄ or equivalently, u = ϕ−1(c̄);
Fig. 1(b) shows the case whenp = ϕ(ρ) > c̄ , i.e., ρ ∈ [u, 1]. Based on the expression ofh(p) in Eq. (12),
for both subfigures in Fig. 1, the area of the grey region and the two blue regions (which is referred

to as ‘grey+blue’) represents the numerator of the fraction in Eq. (32), while the denominator is

the area of the grey region only (which is referred to as ‘grey’). Therefore, based on Eq. (32), an
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Fig. 1. Illustration of a feasible pricing function ϕ. The parameter u is a resource utilization level such that
ϕ(u) = c̄ .

α-competitive PMϕ is equivalent to a pricing function ϕ so that the ratio between ‘grey+blue’ and
‘grey’ is less than or equal to α for all possible ρ’s in [ω,ϕ−1(p̄)].

In summary, given a pricing function ϕ that satisfies the sufficient conditions in Theorem 4.1,

when the final resource utilization level ρ ∈ [0,ω], the competitive ratio of PMϕ is 1; when

ρ ∈ [ω,ϕ−1(p̄)], the competitive ratio of PMϕ equals the maximum ratio between ‘grey+blue’ and
‘grey’ for all ρ ∈ [ω,ϕ−1(p̄)]. Since there is no prior information of ρ, the competitive ratio of PMϕ
is dominated by the latter case, leading to the expression of α in Eq. (32).

5.2 Intuitions via Worst-Case Analysis
Our above analysis only visualizes the geometric meaning of Eq. (32), but reveals little intuition

and rationality about why the maximum ratio between ‘grey+blue’ and ‘grey’ determines the

competitive ratio of PMϕ . Belowwe show that, Eq. (32) can be traced back to the original definition of

α in Eq. (4), based on which the rationality of Theorem 4.1 can be demonstrated by the performance

of PMϕ under a special arrival instance in the worst-case scenario.

To be more specific, let us again focus on the case when the final resource utilization level under

PMϕ is ρ ∈ [ω, ρ̄]. For any given ρ ∈ [ω, ρ̄], let us assume the interval [0, ρ] is discretized into K +B
blocks with each block ∆ long, i.e., ∆ = ρ/(K + B), where we assume ∆ is infinitesimally small. Let

us consider a special arrival instance, denoted by Aρ , which consists of three groups of agents as

follows: the first group of agents are similar to our construction of A
¯

p in Section 4.2, where we have K
identical agents with valuation density

¯

p and requirement ∆. Here, we assume K∆ = ω. The second
group of agents are indexed by b ∈ {1, 2, · · · ,B}, and the third group of agents are also identical and
are indexed by i , where i = {1, 2, · · · , I } and I ≥ 1/∆. For each request b ∈ {1, 2, · · · ,B} in the second
group, we assume the valuation of agent b is given by vb = ϕ(ω + b∆) · ∆, where ϕ(ω + b∆) and
∆ denote the valuation density of agent b and the resource requirement of her request, respectively.
Similarly, for each request i ∈ {1, 2, · · · , I } in the third group, we assume the valuation of agent i is
given by vi = ϕ(ρ)∆, where ϕ(ρ) and ∆ denote the valuation density of agent i and the requirement of
her request, respectively.

Given an arrival instance Aρ with ρ ∈ [ω, ρ̄], let us denote p = ϕ(ρ). The optimal social welfare

in hindsight, denoted by Soffline(Aρ ), is to reject all the requests in the first two groups but satisfy all
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the requests in the third group until reaching the resource utilization level y, at which the marginal

cost equals either p (i.e., y = f ′−1(p)) or
¯

c (i.e., y = 1). Thus, Soffline(Aρ ) is given by

Soffline(Aρ ) =

{
p f ′−1(p) − f

(
f ′−1(p)

)
if p ∈ (

¯

c, c̄],

p − f (1) if p ∈ (c̄,+∞),
(33)

which equals the numerator of the fraction in Eq. (32) based on the expression of h(p) in Eq. (11).

Note that I ≥ 1/∆ guarantees that the final resource utilization level y = f ′−1(p) or y = 1 can be

reached by the offline optimal strategy.

In comparison, given the arrival instance Aρ , our online mechanism PMϕ will satisfy all the

requests in the first two groups and reject all in the third group. Thus, the social welfare is given by

Sonline(Aρ ) =
¯

pK∆ +
B∑
b=1

ϕ(ω + b∆) · ∆ − f (ρ) , (34)

which equals the denominator of the fraction in Eq. (32) since K∆ = ω and ∆ is infinitesimally

small.

Based on (32)-(34), the competitive ratio of PMϕ is given by

α = max

ρ ∈[ω, ρ̄]

Soffline(Aρ )

Sonline(Aρ )
= max

all possible A

Soffline(A)

Sonline(A)
,

where the second equality is from the original definition of α in Eq. (4). It becomes clear now that

the sufficient conditions in Theorem 4.1 lead to the expression of α in Eq. (32), which in principle

captures the worst-case performance ratio between the optimal strategy in hindsight and our

proposed online mechanism PMϕ under a continuum of special arrival instances {Aρ }{∀ρ ∈[ω, ρ̄]} .
In this regard, the arrival instanceAρ is not constructed randomly; it indeed captures the worst-case

scenario in the context.

5.3 Generalizations of Theorem 4.1
5.3.1 General Increasing Pricing Functions. Based on Eq. (32), we can generalize Theorem

4.1 to the following Corollary 5.1 with a broader class of competitive pricing functions.

Corollary 5.1. Given a convex setup S, if ϕ is given by

ϕ(y) =


¯

p if y ∈ [0,ω),

φ(y) if y ∈ [ω, 1],

+∞ if y ∈ (1,+∞),

(35)

where ω ∈ (0,
¯

ρ], and φ is increasing in [ω, 1] with φ(ω) =
¯

p and φ(1) ≥ c̄ , then PMϕ is IC and
α(ω,φ)-competitive, where α(ω,φ) is

α(ω,φ) = max

{
h
(
¯

p
)

F
¯

p (ω)
,

h(p̄)

¯

pω +
∫ ρ̄φ
ω φ(y)dy − f

(
ρ̄φ

) , max

ρ ∈[ω, ρ̄φ ]

h
(
φ(ρ)

)
¯

pω +
∫ ρ
ω φ(y)dy − f (ρ)

}
. (36)

In Eq. (36), ρ̄φ is the maximum resource utilization level defined as:

ρ̄φ ≜

{
φ−1(p̄) if p̄ ≤ φ(1),

1 if p̄ > φ(1).

Corollary 5.1 argues that any continuous pricing function with a flat-segment and an increasing-

segment can lead to a bounded competitive ratio for PMϕ . Recall that when ω = 0, our previous

necessary conditions in Theorem 4.2 argue that it is impossible to achieve a bounded competitive
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ratio. This can be illustrated by Eq. (36), where the first term in the bracket is unbounded since

F
¯

p (0) = 0. Note that the third term in Eq. (36) is derived from Eq. (32). Meanwhile, when φ(1) ≥ p̄,

the second term in the bracket of Eq. (36) is not needed as it is contained by the third term. The

proof of Corollary 5.1 is given in Appendix D.

Remark 3. Based on Theorem 4.3 and Corollary 5.1, we argue that α∗(S) is the optimal solution to
the following optimization problem:

α∗(S) = minimize

ω,φ
α(ω,φ)

subject to ω ∈ [0,
¯

ρ],

φ ′(y) ≥ 0,∀y ∈ [ω, 1],

φ(ω) =
¯

p,φ(1) ≥ c̄ .

In this regard, our previous design of ω∗ and φ∗ in Theorem 4.3 essentially provides a method of solving
the above optimization problem in functional spaces.

5.3.2 Pricing Functions forMultiple Time Slots. Our mechanism also extends to more general

settings when there exists multiple time slots. Specifically, let us consider the following model:

maximize

x ,y

∑
n∈N

vnxn −
∑
t ∈T

¯ft (yt ) (37a)

subject to

∑
n∈N

r tnxn = yt ,∀t ∈ T , (37b)

xn ∈ {0, 1},∀n ∈ N . (37c)

In Problem (37), we consider a discrete time system and index different time slots by t ∈ T ≜
{1, 2, · · · ,T }. In Eq. (37a), the supply cost at t ∈ T is directly written as an extended cost function

¯ft , i.e., ¯ft (y) = ft (y) if y ∈ [0, 1], and ¯ft (y) = +∞ if y ∈ (1,+∞). In Eq. (37b), r tn denotes the

requirement of agent n at t ∈ Tn , where Tn represents the time duration of request n. We assume

r tn = 0 if t < Tn and r tn > 0 if t ∈ Tn so that we can simply denote the resource requirement of

request n by {r tn}∀t ∈T . Meanwhile, similar to our previous basic resource allocation model, each

agent n ∈ N can be represented by θn =
(
{r tn}∀t ∈Tn ,vn

)
, where vn denotes the valuation of agent

n if all the requirements {r tn}∀t ∈Tn are satisfied.

While most of our previous definitions and notations can be reused by simply adding a time

index t ∈ T , e.g., ht (p),
¯

ct , and c̄t , we redefine the lower and upper bounds of the valuation density

by

min

n∈N:r tn,0

{vn
r tn

}
≥

¯

pt , max

n∈N:r tn,0

{vn
r tn

}
≤ p̄t ,∀t ∈ T ,

where

¯

pt and p̄t correspond to

¯

p and p̄ in Assumption 1, respectively. Based on

¯

pt and p̄t , we can
define

¯

ρt and ρ̄t in the similar way as

¯

ρ and ρ̄ in Eq. (20). Here we omit the details for brevity.

Following the principle discussed in Section 3.3, we can design a pricing function p̂(n)t = ϕt (y
(n)
t )

for each time slot t ∈ T , where y(n)t denotes the total resource utilization after processing agent

n, similar to our definition of ŷn in Eq. (18). Based on the pricing functions {ϕt }∀t , we can set the

utility of agent n ∈ N by

γ̂n = max

{
vn −

∑
t ∈Tn

r tn · ϕt
(
y(n−1)
t

)
, 0

}
,∀n ∈ N ,

where

∑
t ∈Tn r

t
n ·ϕt (y

(n−1)
t ) denotes the payment of agent n if γ̂n > 0. The mechanism PMϕ can thus

be generalized to a posted price mechanism PMϕ with a vector of pricing functions ϕ ≜ {ϕt }∀t .
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Based on the above discussions, we give a generalized version of Theorem 4.1 in the following

Theorem 5.2.

Theorem 5.2. Given a convex setup S = { ft ,
¯

pt , p̄t }∀t , PMϕ is IC and maxt {αt }-competitive if for
each t ∈ T , ϕt is given by

ϕt (y) =


¯

pt if y ∈ [0,ωt ),

φt (y) if y ∈ [ωt , 1],

+∞ if y ∈ (1,+∞),

(38)

where ωt is the critical threshold that satisfies

F
¯

pt (ωt ) ≥
1

αt
ht (

¯

pt ) and 0 ≤ ωt ≤
¯

ρt , (39)

and φt (y) is an increasing function that satisfies{
φ ′
t (y) ≤ αt ·

φt (y)−f ′t (y)
h′(φt (y))

,y ∈ (ωt , 1)

φt (ωt ) =
¯

pt ,φt (1) ≥ p̄t +
∑

t̂ ∈T\{t } ht̂
(
p̄t̂

)
.

(40)

Note that Eq. (40) is the same as Eq. (23) except the second boundary condition, which depends

on parameters related to all the time slots T . Our previous analysis regarding the basic resource

allocationmodel shows that the optimal competitive ratioα∗(S) depends on the boundary conditions
in Eq. (25). Therefore, in the case with multiple time slots, the final competitive ratio α = maxt {αt }
depends on |T | as well. For the proof of Theorem 5.2, as well as discussions of the properties of

{ϕt }∀t based on Theorem 5.2, please refer to Appendix I.

Remark 4 (Applications in Cloud Computing). Problem (37) can be used to model the online
resource allocation in cloud computing [26, 41]. A cloud service provider allocates a single type of
resources (e.g., CPU) to a set of jobs N = {1, · · · ,N } that arrive in a sequential order, and each job
n ∈ N is active in duration Tn ⊂ T . Based on this interpretation, Problem (37) can be regarded as
maximizing the social welfare of online resource allocation in cloud computing with server costs (e.g.,
energy costs). In particular, the arrival and departure times of job n can be taken into account by Tn ,
and agents are flexible to set their resource requirements in each time slot based on the length of their
active durations.

We end this section with the following remark regarding the setting with multiple types of

resources.

Remark 5 (Multiple Types of Resources). Problem (37) can also be interpreted in the context of
resource allocation with multiple types of resources. Specifically, we can consider that in each time slot
we have a different type of resource so that T denotes the set of resource types. Based on this notational
system, r tn denotes the resource requirement of agent n for resource type t , and Tn represents the set of
resource types required by agent n. For this reason, it is mathematically equivalent to consider multiple
types of resources and multiple time slots. In addition, we can also consider the setup with multiple
resource types and multiple time slots simultaneously. We argue that our previous design principle still
applies to such more general and complex setups. The difference is that we need to design a pricing
function for each type of resource at each time slot6.

6
The rationality is that in the worst case agents may only require a single type of resource at a single time slot.
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Fig. 2. Category of the three cases for a given setup and illustrations of the optimal pricing functions in the
three cases.

6 PROOF OF THEOREM 4.3
In this section, we provide the proof of Theorem 4.3. Our proof is organized in three cases based on

the relationship between

¯

c, c̄ ,
¯

p, and p̄. After the proof, we give an example (quadratic supply cost

f (y) = 1

2
y2
) to show the calculation of α∗(S), the optimal critical threshold ω∗, and the optimal

pricing function ϕ∗.

6.1 Overview of Our Three-Case Proof
Our proof heavily follows the sufficient conditions in Theorem 4.1 and the necessary conditions in

Theorem 4.2. For the sake of better reference, here we revisit BVP(ω,α) as follows:

BVP(ω,α)

{
φ ′(y) = α ·

φ(y)−f ′(y)
h′(φ(y)) ,y ∈ (ω, ρ̄),

φ(ω) =
¯

p,φ(ρ̄) ≥ p̄.
(41)

Based on the expression of h in Eq. (11), the denominator of the ODE in Eq. (41) can be written as

h′ (φ(y)) =

{
f ′−1 (φ(y)) if φ(y) ∈ [

¯

c, c̄],

1 if φ(y) ∈ (c̄,+∞),
(42)
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Eq. (42) indicates that the ODE in Eq. (41) can be equivalently transformed into two ODEs based

on whether φ(y) is larger than c̄ or not. Moreover, notice that the second boundary condition of

BVP(ω,α) is φ(ρ̄) ≥ p̄, where p̄ can be either less than or larger than c̄ . For this reason, based on

the values of

¯

p and p̄, as well as the two boundary conditions in Eq. (41), we can categorize the

whole possibilities into three cases as follows.

• Case-1:
¯

c <
¯

p < c̄ < p̄. This case captures the setup when the minimum valuation density is

small but the maximum valuation density is large.

• Case-2:
¯

c < c̄ ≤
¯

p ≤ p̄. This case captures the setup when the minimum valuation density is

large.

• Case-3:
¯

c <
¯

p ≤ p̄ ≤ c̄ . This case captures the setup when the maximum valuation density is

small.

We illustrate the above three cases in Fig. 2(a). A nice setup S must have p̄ ≥
¯

p, and thus we

only focus on the upper-left triangular part. We next present our proof of Theorem 4.3 in Case-1.
The proofs of Theorem 4.3 in Case-2 and Case-3 are similar and thus are deferred to Appendix G.

6.2 Proof of Theorem 4.3 in Case-1
In this case,

¯

p < c̄ < p̄ indicates that

¯

ρ < 1 = ρ̄. Based on the two boundary conditions in Eq. (41),

there must exist a resource utilization threshold u ∈ (ω, 1) so that ϕ(u) = c̄ , as illustrated in Fig. 1(b).

Based on Theorem 4.1 and Theorem 4.2, we give the following Corollary 6.1 which summarizes the

sufficient and necessary conditions in Case-1.

Corollary 6.1. Given a convex setup S in Case-1, PMϕ is IC and α-competitive if there exists a
pair of resource utilization thresholds (ω,u) ∈ [F−1

¯

p
(

1

α h
(
¯

p
) )
,
¯

ρ] × (ω, 1) such that ϕ is given by

ϕ(y) =


¯

p if y ∈ [0,ω],

φ1(y) if y ∈ [ω,u],

φ2(y) if y ∈ [u, 1],

+∞ if y ∈ (1,+∞),

(43)

where φ1(y) is a solution to the following BVP:

BVP1(ω,u,α)

{
φ ′

1
(y) = α ·

φ1(y)−f ′(y)
f ′−1(φ1(y))

,y ∈ (ω,u);

φ1(ω) =
¯

p,φ1(u) = c̄,
(44)

and φ2(y) is a solution to the following BVP:

BVP2(u,α)

{
φ ′

2
(y) = α · (φ2(y) − f ′(y)) ,y ∈ (u, 1);

φ2(u) = c̄,φ2(1) ≥ p̄.
(45)

On the other hand, if there exists an α -competitive online algorithm, then there must exist some pair of
(ω,u) ∈ [F−1

¯

p
(

1

α h(
¯

p)
)
,
¯

ρ] × (ω, 1) such that BVP1(ω,u,α) and BVP2(u,α) are well-defined, and each
of them has a strictly-increasing solution.

In Corollary 6.1, F−1

¯

p represents the inverse
7
of the profit function F

¯

p defined in Eq. (8), and

F−1

¯

p
(

1

α h
(
¯

p
) )

is derived from Eq. (22). The flat-segment [0,ω] of ϕ directly follows Theorem 4.1. The

two BVPs in Eq. (44) and Eq. (45), as well as their corresponding solutions φ1(y) and φ2(y), follow

7
Based on Eq. (8), F

¯

p (y) is strictly increasing in y ∈ [0,
¯

ρ] since f ′(y) ≤
¯

p holds for all y ∈ [0,
¯

ρ]. Thus, the inverse of F
¯

p ,

denoted by F−1

¯

p , is well-defined.
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Theorem 4.2 after substituting h′(φ(y)) from Eq. (42) into BVP(ω,α). The sufficiency and necessity

of Corollary 6.1 thus follow.

Corollary 6.1 not only shows how to justify whether a given pricing function is competitive

or not, but also argues that, to find the optimal competitive ratio, we simply need to find the

minimum α so that both BVP1(ω,u,α) and BVP2(u,α) have strictly-increasing solutions. Below

we give Proposition 6.2 which shows the existence conditions of solutions to both BVP1(ω,u,α)
and BVP2(u,α).

Proposition 6.2. Given a convex setup S in Case-1, the following claims regarding BVP1(ω,u,α)
and BVP2(u,α) are true:

• For each given pair of (ω,u) ∈ [F−1

¯

p
(

1

α h
(
¯

p
) )
,
¯

ρ] × (ω, 1), there exists a well-defined function
Γ1(ω,u) so that BVP1(ω,u,α) has a unique strictly-increasing solution if and only if α = Γ1(ω,u).

• For each given u ∈ (0, 1), BVP2(u,α) has a unique strictly-increasing solution if and only if
α ≥ Γ2(u), where Γ2(u) is the unique root to the following equation in variable Γ2:∫

1

u

Γ2 f
′(y)

exp(yΓ2)
dy =

p̄

exp(Γ2)
−

c̄

exp(uΓ2)
. (46)

Moreover, for each given u ∈ (0, 1), when α = Γ2(u), the unique solution to BVP2(u,α) satisfies
φ2(1) = p̄.

The proof of Proposition 6.2 is based on the two ODEs given in Eq. (44) and Eq. (45), and the

details are deferred to Appendix E. Based on the above Proposition 6.2, below we give the optimal

competitive ratio in Case-1.

Theorem 6.3. Given a convex setup S in Case-1, the optimal competitive ratio achievable by all
online algorithms is given by:

α∗(S) =
h
(
¯

p
)

F
¯

p (ω∗)
= Γ1(ω∗,u∗) = Γ2(u∗), (47)

where u∗ ∈ (0, 1) is the unique root that satisfies

Γ1

(
F−1

¯

p

(
h(

¯

p)

Γ2(u∗)

)
,u∗

)
= Γ2(u∗), (48)

and ω∗ ∈ [0,
¯

ρ] is given by

ω∗ = F−1

¯

p

(
h
(
¯

p
)

Γ2(u∗)

)
.

Meanwhile, PMϕ∗
isα∗(S)-competitive if and only ifϕ∗ is given by Eq. (43)with (ω,u,α) = (ω∗,u∗,α∗(S)).

Moreover, we have ϕ∗(1) = p̄.

Proof. This theorem shows the unique existence ofω∗,u∗, and α∗(S). Based on these parameters,

we can calculate the unique optimal pricing function ϕ∗ based on Eq. (43). The proof of the unique

existence of ω∗ and u∗ is based on Proposition 6.2. For the detailed proof, please refer to Appendix

F. □

Based on Theorem 6.3, Theorem 4.3 directly follows in Case-1. Due to space limitations, we

defer the proof of Theorem 4.3 in Case-2 and Case-3 to Appendix G.

Fig. 2(b) illustrates the optimal pricing function ϕ∗ in Case-1. We can see that in addition to the

flat-segment [0,ω∗], the increasing-segment is further divided into two parts, namely, [ω∗,u∗] and
[u∗, 1]. Meanwhile, Fig. 2(c) and Fig. 2(d) illustrate the optimal pricing functions in Case-2 and

Case-3, respectively. Note that by PMϕ∗
, the highest-possible resource utilization levels in Case-1
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and Case-2 are 1, while in Case-3 is ρ̄ and ρ̄ < 1. This is consistent with our definition of ρ̄ in Eq.

(20).

For all the three cases, the optimal pricing function ϕ∗ cannot be given in analytical forms. We

argue that the computation of ω∗,u∗, and α∗(S) is light-weight and can be performed efficiently

via various numerical methods such as bisection searching. More importantly, ω∗ and u∗ can be

computed offline before the start of PMϕ . For more detailed discussions of how to quantify ω∗, u∗,
and α∗(S), please refer to Appendix J.

6.3 An Example:Quadratic Supply Costs
To better show how to calculate ω∗, u∗, α∗(S), and ϕ∗ in Theorem 6.3, in this subsection we perform

a case study based on quadratic supply costs. Let us assume f (y) = 1

2
y2

(i.e., f ′(y) = y), and thus

¯

c = f ′(0) = 0 and c̄ = f ′(1) = 1. Based on the definitions of h and Fp in Section 3.1, we have

h(
¯

p) =

{
1

2

¯

p2
if p ∈ [

¯

c, c̄]

¯

p − 1

2
if p ∈ (c̄,+∞)

, F
¯

p (ω) =
¯

pω −
1

2

ω2.

Therefore, the lower bound of the critical threshold ω can be written as a function of α as

F−1

¯

p ( 1

α h(
¯

p)) =
¯

p
(
1 −

√
1 − 1/α

)
.

We next show how to compute ω∗, u∗, α∗(S) in Case-1. When f ′(y) = y, BVP1(ω,u,α) in Eq.

(44) can be written as {
φ ′

1
(y) = α ·

φ1(y)−y
φ1(y)

,y ∈ (ω,u);

φ1(ω) =
¯

p,φ1(u) = 1.
(49)

The ODE in Eq. (49) can be solved by separation of variables [36]. Substituting the two boundary

conditions into the solution of the ODE in Eq. (49) leads to the following equation of α , ω, and u:∫
1/u

¯

p/ω

−η

η2 − αη + α
dη = ln

(u
ω

)
. (50)

Based on Proposition 6.2, Eq. (50) has a unique root in α ≥ 1 for each given pair of (ω,u) ∈

[F−1

¯

p
(

1

α h
(
¯

p
) )
,
¯

ρ] × (ω, 1). Therefore, α = Γ1(ω,u) is well-defined through Eq. (50).

Similarly, BVP2(u,α) in Eq. (45) can be written as{
φ ′

2
(y) = α · (φ2(y) − y) ,y ∈ (u, 1);

φ2(u) = c̄,φ2(1) = p̄,
(51)

where the second boundary condition is written as an equality since the optimal design should have

ϕ∗(1) = p̄, as indicated by Theorem 6.3. Solving the ODE in Eq. (51) is elementary. Substituting the

two boundary conditions into the analytical solution of the ODE in Eq. (51) leads to the following

equation of α and u:

exp (α(1 − u)) =
α(1 + p̄) + 1

α(u + c̄) + 1

. (52)

Based on Proposition 6.2, Eq. (52) has a unique root in α for each givenu ∈ (0, 1), and thus α = Γ2(u)
is well defined through Eq. (52). Note that Eq. (52) is a simplification of Eq. (46) when f ′(y) = y.
Combining the above results, when f ′(y) = y, the calculation of ω∗, u∗ and α∗(S) (which is

denoted as α∗ below for simplicity) in Eq. (47) can be written as the following system of three
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Case-3

Case-1

(a)

¯

p = 0.3

Case-2

(b)

¯

p = 1.1

Fig. 3. Relationship between α∗(S) and p̄ when f (y) = 1

2
y2.

equations:

ω∗ =
¯

p
(
1 −

√
1 − 1/α∗

)
, (53a)∫

1/u∗

¯

p/ω∗

−η

η2 − α∗η + α∗
dη = ln

(
u∗
ω∗

)
, (53b)

exp (α∗(1 − u∗)) =
α∗(1 + p̄) + 1

α∗(u∗ + 1) + 1

. (53c)

Based on Theorem 6.3, the above system of equations has a unique pair of solutions (ω∗,u∗,α∗). In
particular, the optimal competitive ratio for the quadratic cost setup can be written as

α∗(S) =
h
(
¯

p
)

F
¯

p (ω∗)
=


¯

p2

2

¯

pω∗−ω2

∗
if p ∈ [

¯

c, c̄],
2

¯

p−1

2

¯

pω∗−ω2

∗
if p ∈ (c̄,+∞).

Recall that for the linear cost setup in Corollary 4.5, α∗(S) =
1

ω∗
.

When calculating the unique solution to Eq. (53), we can substitute ω∗ given by Eq. (53a) into

Eq. (53b), and then leverage the monotonicity of both sides of Eq. (53b) and Eq. (53c) to locate the

unique values of α∗ and u∗. Based on α∗ and u∗, the optimal critical threshold ω∗ can be easily

calculated based on Eq. (53a). Theorem 6.3 shows that the optimal pricing function ϕ∗ can be

obtained as long as ω∗,u∗ and α∗ are given. For example, in Case-1, we can solve BVP1(ω∗,u∗,α∗)
in Eq. (49) to get the optimal pricing function φ∗

1
in the interval [ω∗,u∗], and solve BVP2(u∗,α∗) in

Eq. (51) to get the optimal pricing function φ∗
2
in the interval [u∗, 1]. The complete optimal pricing

function ϕ∗ (in Case-1) can thus be determined.

We numerically solve the system of equations in Eq. (53) and illustrate the relationship between

α∗ and p̄ in Fig. 3. Specifically, we fix

¯

p = 0.3 and vary p̄ from 0.3 to 7.1 in Fig. 3(a) so that our

parameter setting covers both Case-1 (i.e., p̄ > 1) and Case-3 (i.e., p̄ ≤ 1). Meanwhile, we fix

¯

p = 1.1 and vary p̄ from 1.1 to 12.1 in Fig. 3(b) to simulate Case-2 (i.e.,

¯

p ≥ 1). Fig. 3 shows that

α∗(S) = 1 when p̄ =
¯

p, and is strictly increasing in p̄ ∈ [
¯

p,+∞). This validates our results in

Corollary 4.4. Note that the systems of equations for the calculation of α∗ in Case-2 and Case-3
are different from Eq. (53). For the details, please refer to Appendix G.
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7 CONCLUSION AND FUTUREWORK
We studied the mechanism design for general online resource allocation problems in the presence

of supply costs and capacity limits. In this setting, the supplier can produce additional units of

resources at increasing marginal cost, but with a stringent capacity limit; agents are strategic and

may deliberately misreport their preference to be better off. The major contribution of the paper is

the development of a unified incentive compatible online mechanism, with a principled method of

constructing a universal “pricing function", that leads to the optimal competitive ratios for different

setups including zero, linear and strictly-convex supply costs.

One of the drawbacks of the current design is that the optimal competitive ratio, as well as

other key design parameters such as the optimal critical threshold ω∗, cannot be given in analytical

forms. This brings difficulty in analyzing the properties of the competitive ratio w.r.t. important

system parameters such as the lower and upper bounds of valuation densities (i.e.,

¯

p and p̄). It also
remains unclear if there exists any analytical (and thus simple) pricing function so that the optimal

competitive ratio can be approximately achieved. Meanwhile, extending the proposed techniques

to other online optimization problems is also an interesting future direction.
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A PROOF OF THEOREM 4.1
The sufficient conditions in Theorem 4.1 are derived based on Proposition 3.1. Specifically, we need

to prove that under PMϕ , i) the sequences of {Pn}∀n and {Dn}∀n are feasible, and ii) there exists

some k ∈ N so that the initial inequality and the incremental inequality hold. Based on Proposition

3.2, the feasibility of {Pn}∀n and {Dn}∀n are trivial since the pricing function ϕ given by Eq. (19)

is monotone. In the following we focus on the proof of the initial inequality and the incremental

inequality.

(Initial Inequality) Let us assume ω =
∑k

n=1
rn , namely, k is the number of agents such that the

total resource allocated equals ω. In the following we prove that the initial inequality Pk ≥ 1

α Dk

holds. Based on Eq. (22),ω is the resource utilization threshold such that F
¯

p (ω) =
¯

pω− ¯f (ω) ≥ 1

α h(
¯

p).

Thus, we have

¯

p ·

(
k∑

n=1

rn

)
− ¯f

(
k∑

n=1

rn

)
≥

1

α
h(

¯

p),

Since α ≥ 1 and γ̂n ≥ 0 for all n ∈ N , the above inequality leads to the following one(
1 −

1

α

) k∑
n=1

γ̂n +
k∑

n=1
¯

prn − ¯f

(
k∑

n=1

rn

)
≥

1

α
h(

¯

p).

The pricing function given by Eq. (19) indicates that the requirements of all the requests will be

satisfied as long as the resource utilization is below ω. For this reason, we have ŷk =
∑k

n=1
rn = ω,

which represents the total resource utilization after processing request k . Therefore, we have

k∑
n=1

γ̂n +
k∑

n=1
¯

prn − ¯f (ŷk ) ≥
1

α

(
k∑

n=1

γ̂n + h(
¯

p)

)
, (54)

Note that the left-hand-side of Eq. (54) is equal to Pk since

∑k
n=1

γ̂n +
∑k

n=1

¯

prn − ¯f (ŷk ) =
∑k

n=1
vn −

¯f (ŷk ) = Pk , where the first equality comes from vn = γ̂n + p̂n−1rn = γ̂n +
¯

prn . Here, p̂n−1 =
¯

p holds

for all n = {1, 2, · · · ,k} because the posted prices for all these agents are

¯

p (i.e., the flat-segment).

Meanwhile, based on the objective of Problem (10), the terms inside the parenthesis of Eq. (54)

equal Dk , namely, Dk =
∑k

n=1
γ̂n +h(

¯

p). Therefore, Eq. (54) indicates that Pk ≥ 1

α Dk holds. We thus

complete the proof of the initial inequality.

(Incremental Inequality)We nowprove that the incremental inequality Pn−Pn−1 ≥ 1

α (Dn − Dn−1)

holds for all n ∈ {k + 1, · · · ,N }. Note that if agent n is rejected (i.e., the demand of agent

n is not satisfied), then Pn = Pn−1 and Dn = Dn−1. In this case, the incremental inequality

Pn − Pn−1 ≥ 1

α (Dn − Dn−1) holds for all α ≥ 1. Therefore, in the following we only focus on

the case when the requirement of agent n is satisfied. Eq. (23) shows that the following differential

inequality holds

ϕ(ŷn−1) − ¯f ′(ŷn−1) ≥
1

α
· h′

(
ϕ(ŷn−1)

)
· ϕ ′(ŷn−1) (55)

for all ŷn−1 ∈ [ω, ρ̄). Since ŷn − ŷn−1 = rn , based on the Taylor series we have

¯f (ŷn) = ¯f (ŷn−1) + ¯f ′ (ŷn−1) (ŷn − ŷn−1) +O(r
2

n),

h
(
ϕ(ŷn)

)
= h

(
ϕ(ŷn−1)

)
+ h′

(
ϕ(ŷn−1)

) (
ϕ(ŷn) − ϕ(ŷn−1)

)
+O

( (
ϕ(ŷn) − ϕ(ŷn−1)

)
2

)
,

ϕ (ŷn) = ϕ (ŷn−1) + ϕ
′ (ŷn−1) (ŷn − ŷn−1) +O(r

2

n).
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Based on Eq. (55) and the above Taylor series, we have

ϕ (ŷn−1) −
¯f (ŷn) − ¯f (ŷn−1)

ŷn − ŷn−1

−O(rn)

≥
1

α
·

(
h (ϕ (ŷn)) − h (ϕ (ŷn−1))

ϕ (ŷn) − ϕ (ŷn−1)
−O(rn)

)
·

(
ϕ (ŷn) − ϕ (ŷn−1)

ŷn − ŷn−1

−O(rn)

)
,

Assumption 2 states that rn is sufficiently small, i.e., rn → 0. Thus, the following inequality holds:

ϕ (ŷn−1) (ŷn − ŷn−1) −
(

¯f (ŷn) − ¯f (ŷn−1)
)
≥

1

α
(h (ϕ (ŷn)) − h (ϕ (ŷn−1))) .

Since γ̂n ≥ 0 and 1 − 1

α ≥ 0, we have(
1 −

1

α

)
γ̂n +

(
ϕ(ŷn−1)(ŷn − ŷn−1) −

(
¯f (ŷn) − ¯f (ŷn−1)

))
≥

1

α
(h (ϕ (ŷn)) − h (ϕ (ŷn−1))) , (56)

Note that after processing agent n, the change in the primal objective is given by Pn − Pn−1 =

vn −
(

¯f (ŷn) − ¯f (ŷn−1)
)
= γ̂n + ϕ(ŷn−1) (ŷn − ŷn−1) −

(
¯f (ŷn) − ¯f (ŷn−1)

)
, where the second equality

is due to vn = γ̂n + p̂n−1rn = γ̂n + ϕ(ŷn−1)(ŷn − ŷn−1). Similarly, the change in the dual objective

is given by Dn − Dn−1 = γ̂n + h(p̂n) − h(p̂n−1) = γ̂n + h (ϕ (ŷn)) − h (ϕ (ŷn−1)). Therefore, Eq. (56)

indicates that the incremental inequality Pn−Pn−1 ≥ 1

α (Dn − Dn−1) holds for all n ∈ {k+1, · · · ,N }

when ŷn−1 ∈ [ω, ρ̄).
Note that we need to guarantee that the incremental inequality holds at each round for all

ŷn−1 ∈ [ω, ρ̄], where ρ̄ represents the maximum resource utilization level. Therefore, we need to

consider the boundary condition of ϕ(y) when y = ρ̄. First, ϕ(ω) =
¯

p is obvious as the pricing

function ϕ must be continuous. Taking integration of both sides of Eq. (55) leads to∫ ρ

ω
ϕ(y)dy − ¯f (ρ) + ¯f (ω) ≥

1

α

(
h
(
ϕ(ρ)

)
− h

(
¯

p
) )
.

Meanwhile, based on the flat-segment, we have

¯

pω − ¯f (ω) ≥ 1

α h(
¯

p). Thus, we have

¯

pω +

∫ ρ

ω
ϕ(y)dy − ¯f (ρ) ≥

1

α
h
(
ϕ(ρ)

)
, (57)

which is the same as Eq. (31). When ρ = ρ̄, the above inequality also holds, and thus we have

¯

pω +

∫ ρ̄

ω
ϕ(y)dy − f (ρ̄) ≥

1

α
h
(
ϕ(ρ̄)

)
. (58)

On the other hand, PMϕ is α-competitive indicates that the following inequality must hold:

¯

pω +

∫ ρ̄

ω
ϕ(y)dy − f (ρ̄) ≥

1

α
h(p̄). (59)

Therefore, if we have ϕ(ρ̄) ≥ p̄, then Eq. (58) guarantees that Eq. (59) always holds. This means, the

incremental inequality Pn − Pn−1 ≥ 1

α (Dn − Dn−1) holds at each round for all ŷn−1 ∈ [ω, ρ̄] as long
as the pricing function satisfies{

ϕ(y) − f ′(y) ≥ 1

α · h′ (ϕ(y)) · ϕ ′(y),y ∈ (ω, ρ̄),

ϕ(ω) =
¯

p,ϕ(ρ̄) ≥ p̄.

We thus complete the proof of the incremental inequality in Eq. (23).

Summarizing our above proofs regarding the initial and incremental inequalities, we complete

the proof of Theorem 4.1.
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B PROOF OF THEOREM 4.2
Our proof of Theorem 4.2 is organized as follows. We first give a set of less restrictive conditions in

Theorem B.1, based on which we give Theorem B.2 to show the existence of strictly-increasing

allocation functions and pricing functions. Based on Theorem B.1 and Theorem B.2, Theorem 4.2

directly follows.

B.1 General Necessary Conditions
TheoremB.1 below gives a set of necessary conditions to guarantee the existence of anα-competitive

online algorithm.

Theorem B.1. Given a convex setup S, if there exists an α -competitive online algorithm, then there
must exist a parameter ω which satisfies

F
¯

p (ω) ≥
1

α
h
(
¯

p
)
and 0 ≤ ω ≤

¯

ρ (60)

so that the following claims hold simultaneously:
• NC1): There exists a case when the total resource utilization is ω and all the accepted agents
have the same valuation density

¯

p.
• NC2): There exists a non-decreasing functionψ (p) that satisfies{

¯

pω +
∫ p

¯

p ηψ ′(η)dη − f
(
ψ (p)

)
≥ 1

α h (p) ,p ∈ (
¯

p, p̄),

ψ
(
¯

p
)
= ω,ψ

(
p̄
)
≤ ρ̄,

(61)

whereψ (p) is a monotone mapping from p ∈ [
¯

p, p̄] toψ (p) ∈ [ω, ρ̄].

Proof. The proof of this theorem is based on constructing a resource utilization level ω and a

monotone functionψ for any α-competitive online algorithm under two special arrival instances.

We organize our proofs of NC1 and NC2 as follows.

(Proof of NC1) By definition, an α-competitive online algorithm must achieve an online social

welfare that is no less than
1

α of its offline counterpart for all possible arrival instances. To prove this,

we first construct an arrival instanceA
¯

p as follows: there areK agents inA
¯

p with the same valuation
density

¯

p, and all the requests ask for resources with the same requirement ∆, where ∆ is infinitely
small and K∆ =

¯

ρ. Based on Eq. (20), the optimal offline strategy under this arrival instance

is to accept all the requests and the resulting optimal social welfare is given by Soffline(A
¯

p ) =

K
¯

p∆ − ¯f (K∆) =
¯

p ·
¯

ρ − ¯f (
¯

ρ) = h(
¯

p). For any α-competitive online algorithm (including PMϕ ), let

us denote the final resource utilization level by ω ∈ [0, 1], then the online social welfare is given

by Sonline(A
¯

p ) =
¯

pω − ¯f (ω) = F
¯

p (ω). Based on Soffline(A
¯

p ) and Sonline(A
¯

p ), the online algorithm is

α-competitive indicates that Sonline(A
¯

p ) = F
¯

p (ω) ≥
1

α Soffline(A
¯

p ) =
1

α h
(
¯

p
)
. Meanwhile, ω must be

less than or equal to

¯

ρ since otherwise the marginal cost is larger than the valuation density

¯

p, i.e.,
ω ∈ [0,

¯

ρ]. Combining these results, we can conclude that under the arrival instance A
¯

p , if there is

an α-competitive online algorithm, then this algorithm must accept all the agents so that the total

resource utilization is ω. We thus complete the proof of NC1.
(Proof of NC2) Our proof of NC2 is based on constructing a special arrival instance Ap such

that any α-competitive online algorithm must satisfy the inequality in Eq. (61) in order to achieve

at least
1

α of the offline optimal social welfare in hindsight. Specifically, for any p ∈ [
¯

p, p̄], Ap is

constructed as follows.We assume that Ap consists of two groups of arrivals. First, there is a group of
identical agents whose valuation densities are

¯

p and the total resource requirements of these identical
agents are ω. In the following, we refer to the identical agents in this group by Group-(

¯

p,ω). Second,
let us assume for each η ∈ [

¯

p,p], there is a group of agents parameterized by η, where all the agents in
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group η are identical and has a total requirement of h′(η) (i.e., each customer’s requirement is infinitely
small and the total of them is h′(η)). Meanwhile, the valuation densities of all the agents in group η are
the same value of η, namely, the total valuation of all the agents in this group is given by vη = ηh′(η).
We refer to the agents in the second continuum of groups by Groups-(

¯

p,p). Recall that based on Eq.

(12), h′
is given by

h′ (η) =

{
f ′−1 (η) if η ∈ [

¯

c, c̄],

1 if η ∈ (c̄,+∞),
(62)

Therefore, h′(η) is the maximum units of resource that can be supplied when the marginal cost is η
per unit.

For a given arrival instance Ap with any p ∈ [
¯

p, p̄], the social welfares achieved by the optimal

offline algorithm and the α-competitive online algorithm are given as follows:

• Offline: the optimal offline result in hindsight is to allocate h′(p) units of resources to the
requests in the last group, i.e., group p inGroups-(

¯

p,p), and none to all the previous requests.
The optimal social welfare is thus

Soffline(Ap ) = ph
′(p) − f (h′(p)) = h(p),

where the second equality comes from the Fenchel duality of h. In fact, if we substitute h′

from Eq. (62) into the above Soffline(Ap ), the equation follows.

• Online: for the α-competitive online algorithm, let y = ψ (η) denote the total resource

utilization after processing the customers in group η ∈ [
¯

p,p], and thusψ (η) represents the
resources allocated to all the groups of customers in [

¯

p,η]. According to NC1, all the requests
in Group-(

¯

p,ω) must be satisfied. Therefore, we haveψ (
¯

p) = ω, meaning that when η =
¯

p, the
total resource utilization is ω, which equals the total resource requirements of all the requests
in Group-(

¯

p,ω). Meanwhile, ψ (η) is monotonically non-decreasing in η ∈ [
¯

p,p] since the
resource allocations are irrevocable. The social welfare achieved by this online algorithm is

thus the total valuation minus the total cost, namely,

Sonline(A
¯

p ) =
¯

pω +

∫ ψ (p)

ψ (
¯

p)
ηd(ψ (η)) − f

(
ψ (p)

)
=

¯

pω +

∫ p

¯

p
ηψ ′(η)dη − f

(
ψ (p)

)
.

Based on Soffline(Ap ) and Sonline(Ap ), the online algorithm is α-competitive means that the

following inequality

¯

pω +

∫ p

¯

p
ηψ ′(η)dη − f

(
ψ (p)

)
≥

1

α
h(p) (63)

holds for all p ∈ [
¯

c, p̄]. According to the definition ofψ and ρ̄, we haveψ (p) ≤ ρ̄, ∀p ∈ [
¯

c, p̄], and
thusψ (p̄) ≤ ρ̄ holds as well. Therefore, if there exists an α-competitive online algorithm, then there

must exist a non-decreasing functionψ (p) that satisfies Eq. (61). □

B.2 Existence of Strictly-Increasing Allocation Functions and Pricing Functions
Based on NC2 in Theorem B.1, Theorem B.2 below shows that it is necessary to have a strictly-

increasing segment [ω, ρ̄] for ϕ.

Theorem B.2. Given a convex setup S, if there exists an α -competitive online algorithm, then there
must exist a positive value ω ∈ [F−1

¯

p
(

1

α h(
¯

p)
)
,
¯

ρ] such that the following claims hold:
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• There exists a strictly-increasing functionψ (p) that satisfies{
ψ ′(p) = 1

α ·
h′(p)

p−f ′(ψ (p)) ,p ∈ (
¯

p, p̄),

ψ (
¯

p) = ω,ψ (p̄) ≤ ρ̄.
(64)

• There exists a strictly-increasing function φ(y) that satisfies{
φ ′(y) = α ·

φ(y)−f ′(y)
h′(φ(y)) ,y ∈ (ω, ρ̄),

φ(ω) =
¯

p,φ(ρ̄) ≥ p̄.
(65)

• ψ (p) and φ(y) are inverse to each other, i.e.,ψ = φ−1 or φ = ψ−1.

Proof. We organize our proofs of Eq. (64) and Eq. (65) as follows.

(Proof of Eq. (64)) We first prove the first bullet of Theorem B.2, namely, there exists a strictly-

increasing function ψ (p) that satisfies Eq. (64) as long as there exists an α-competitive online

algorithm. Note that whenψ (
¯

p) = ω, we can derive based on the left-hand-side of Eq. (63) that

¯

pω +

∫ p

¯

p
ηψ ′(η)dη − f

(
ψ (p)

)
= pψ (p) −

∫ p

¯

p
ψ (η)dη − f

(
ψ (p)

)
.

Based on Theorem B.1 and the above equivalent transformation, we know that there always exists

a non-decreasing functionψ (p) that satisfies the following inequality

ψ (p) ≥
h(p) + α f (ψ (

¯

p))

αp
+

1

p

∫ p

¯

p

(
ψ (η) + f ′

(
ψ (η)

) )
dη (66)

and the boundary conditions: {ψ
(
¯

p
)
= ω,ψ

(
p̄
)
≤ ρ̄}. For ease of exposition, let us write the

right-hand-side of Eq. (66) in a more compact form as follows:

ψ (p) ≥ A(p) + B(p)

∫ p

¯

p
Q

(
ψ (η)

)
dη,p ∈ [

¯

p, p̄], (67)

where A(p), B(p), and Q(ψ (η)) are given by

A(p) =
h(p) + α f (ψ (

¯

p))

αp
,

B(p) =
1

p
,

Q(ψ (η)) = ψ (η) + f ′(ψ (η)).

It can be observed that Eq. (67) is a nonlinear generalization of the standard Gronwell inequality

[33]. Thus, there must exist a tightest lower bound functionψL(p) such that

ψ (p) ≥ ψL(p),p ∈ [
¯

p, p̄],

namely, ψL is defined to be the tightest lower bound of all the ψ ’s that satisfy Eq. (67) with

{ψ
(
¯

p
)
= ω,ψ

(
p̄
)
≤ ρ̄}. We emphasize that the function ψL is well-defined as there exists at least

one non-decreasing function ψ (p) that satisfies Eq. (67) with {ψ
(
¯

p
)
= ω,ψ

(
p̄
)
≤ ρ̄}. Meanwhile,

when Q is in some special forms (e.g., affine), ψL can be analytically given based on A,B, and Q
[33]. Here, the nonlinearity of Q makes it difficult (if not impossible) to derive the exact form ofψL .
To aid our following proof, let us define Ωψ by

Ωψ ≜
{
ψ
��ψ is a strictly-increasing function that satisfies Eq. (64)

}
.
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The first bullet in Theorem B.2 argues that Ωψ is well-defined and non-empty. To prove this, in

what follows we show thatψL ∈ Ωψ , namely,ψL is a strictly-increasing function that satisfies Eq.

(67) by equality and {ψL
(
¯

p
)
= ω,ψL

(
p̄
)
≤ ρ̄}.

Recall thatψL is defined to be the tightest lower bound of all theψ ’s that satisfy Eq. (67) with

{ψ
(
¯

p
)
= ω,ψ

(
p̄
)
≤ ρ̄}, and thusψL(p̄) ≤ ρ̄ always holds. On the other hand, ifψL(p̄) ≤ ρ̄ does not

hold, then it is obvious that there will be no solution to Eq. (61) sinceψ (p) ≥ ψL(p) > ρ̄ holds for

all p ∈ [
¯

p, p̄], which thus contradicts the necessary condition NC2 given by Theorem B.1. For this

reason, we only need to prove thatψL(p) is strictly-increasing in p ∈ [
¯

p, p̄] andψL(
¯

p) = ω. In fact,

the definition ofψL indicates that the following equation ofψL(p) holds for all p ∈ [
¯

p, p̄]:

ψL(p) = A(p) + B(p)

∫ p

¯

p
Q

(
ψL(η)

)
dη. (68)

This is because, if there exists any p̂ ∈ [
¯

p, p̄] such that Eq. (68) does not hold at p = p̂, then we can

always lower the value ofψL(p̂) to reach the equality and make the smaller value as the new output

ofψL(p̂). Based on Eq. (68), we can prove thatψL(p) is strictly-increasing in p ∈ [
¯

p, p̄]. Our proof
is based on contradiction and the details are as follows. As illustrated by the dashed line in Fig.

4, if we assume that ψL is not strictly monotone in p ∈ [
¯

p, p̄], then there must exist a point, say

p0 ∈ [
¯

p, p̄], so thatψ ′
L(p0) = 0. Recall that h′(p) > 0 holds for all p ∈ [

¯

p, p̄] as the conjugate function
h(p) is strictly-convex in p ∈ [

¯

p, p̄]. Thus, we can derive from Eq. (68) that

ψ ′
L(p) =

1

α
·

h′(p)

p − f ′(ψL(p))
, 0,p ∈ [

¯

p, p̄],

which contradictsψ ′
L(p0) = 0. Therefore,ψL is either strictly-increasing or strictly-decreasing. Note

that our design of ω ∈ [F−1

¯

p
(

1

α h(
¯

p)
)
,
¯

ρ] guarantees that
¯

p − f ′(ω) > 0. Therefore, based on the

Picard–Lindelöf theorem [3, 35], there always exists a unique strictly-increasing functionψL that

satisfies the following first-order initial value problem (IVP)
8
:{

ψ ′
L(p) =

1

α ·
h′(p)

p−f ′(ψL (p))
, 0,p ∈ (

¯

p, p̄),

ψL(
¯

p) = ω .
(69)

As a result,ψL must be strictly-increasing. Recall thatψL(p̄) ≤ ρ̄ always holds, together with Eq.

(69), we can conclude thatψL ∈ Ωψ , which means that Ωψ is well-defined and non-empty. Thus,

we complete the proof of Eq. (64).

Remark 6. Our above proof shows that the tightest lower bound functionψL(p) is strictly-increasing
in p ∈ [

¯

p, p̄] and satisfies Eq. (64). If we define similarly that ψU is the tightest upper bound of all
the ψ ’s that satisfy Eq. (67) with {ψ

(
¯

p
)
= ω,ψ

(
p̄
)
≤ ρ̄}, then we can prove a stronger result: for

any given α ≥ 1, if there exists an α-competitive online algorithm, then there exist infinitely-many
strictly-increasing functions that satisfy Eq. (64), unlessψL = ψU since in this case Ωψ is a singleton,
i.e., Ωψ = {ψL}. Geometrically, when α is larger, the shaded area in Fig. 4 will be expanded as
ψU (p̄) −ψL(p̄) becomes larger. In contrast, a smaller α indicates thatψU andψL are closer to each other,
i.e., ψU (p̄) −ψL(p̄) is smaller, and in the extreme case when ψU = ψL , the corresponding value of α
is the minimum competitive ratio that any online algorithm could possibly achieve. For the detailed
discussion of the optimal/minimum competitive ratio, please refer to the proof of Theorem 4.3 in Section
6.

8
We give a brief overview of first-order IVPs in Appendix E.1 and Appendix E.2.
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Fig. 4. Illustration of Ωψ for given
¯

p, p̄, ω, and
¯

ρ. In the figure,ψL andψU denote the tightest lower and upper
boundaries of Ωψ , respectively.

(Proof of Eq. (65)) Now we are ready to prove Eq. (65). Since ψ (p) is strictly-increasing, the
inverse of ψ (p) is well-defined. Let us denote the inverse of y = ψ (p) by p = ψ−1(y) ≜ φ(y). The
derivative ofψ (p) = φ−1(p) can be written as

ψ ′(p) =
1

φ ′ (φ−1(p))
=

1

φ ′(y)
. (70)

Substituting Eq. (70) into Eq. (64) leads to the following ODE

1

φ ′(y)
=

1

α
·

h′(φ(y))

φ(y) − f ′(y)
.

Therefore, we have the following ODE in terms of φ:

φ ′(y) = α ·
φ(y) − f ′(y)

h′
(
φ(y)

) ,y ∈ (ω, ρ̄),

which is exactly the ODE in Eq. (65). Based on the two boundary conditions ofψ (p) given in Eq.

(61), the BVP in Eq. (65) directly follows. Based on the above proofs of Eq. (64) and Eq. (65), we thus

complete the proof of Theorem B.2. □

Based on NC1 in Theorem B.1 and the two BVPs in Theorem B.2, Theorem 4.2 follows.

C PROOF OF COROLLARY 4.5
The proof is simple and intuitive by following our previous analysis of the ODE with boundary

conditions.

(Zero Cost: q = 0) When f (y) = 0, i.e., there is no supply cost, the extended cost function is

given as follows:

¯f (y) =

{
0 if y ∈ [0, 1],

+∞ if y ∈ (1,+∞),

Recall that the conjugate function h(p) is given by h(p) = maxy≥0 py − ¯f (y) = maxy≥0 Fp (y),
which indicates that h(p) = p,∀p ∈ [0,+∞). Therefore, the BVP given by Eq. (25) can be written as
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follows: {
φ ′(y) = α · φ(y),y ∈ (ω, ρ̄),

φ(ω) =
¯

p,φ(1) ≥ p̄.

Based on Eq. (60), we know that ω ≥ 1

α . Solving the above ODE leads to the following solution

φ(y) = δ · exp (αy) ,

where δ can be any real scalar. Based on the two boundary conditions, to minimize α , we set

δ exp (αω) =
¯

p,δ exp (α) = p̄,α =
1

ω
.

Solving the above equations leads to δ =
¯

p/e , where e denotes the base of the natural logarithm.

Therefore, the final optimal pricing function is

ϕ∗(y) =


¯

p if y ∈ [0,ω∗),

¯

p · exp (y/ω∗ − 1) if y ∈ [ω∗, 1],

+∞ if y ∈ (1,+∞),

where ω∗ and α∗ are given by

α∗ = 1 + ln

(
p̄

¯

p

)
,ω∗ =

1

1 + ln(p̄/
¯

p)
.

(Linear Cost: q > 0) When f ′(y) = q and q > 0, namely f (y) = qy when y ∈ [0, 1]. The
conjugate function h(p) is given by

h(p) =

{
0 if p ∈ [0,q],

p − q if p ∈ (q,+∞).

Based on Eq. (60), we have

¯

pω − f (ω) ≥ 1

α

(
¯

p − f (1)
)
, which thus indicates that ω ≥ 1

α . The

differential equation of interest is thus given by{
φ(y) − f ′(y) ≥ 1

α · φ ′(y) · h′ (φ(y)) ,∀y ∈ (ω, 1),

φ(ω) =
¯

p,φ(1) = p̄,

which leads to the following general solution: φ(y) = δ ·exp (αy)+q. Substituting the two boundary
conditions into the general solution leads to φ(ω) = δ · exp(αω) + q =

¯

p,φ(1) = δeα + q = p̄. To
minimize α , it suffices to set ω = 1/α and thus we have

ϕ∗(y) =


¯

p if y ∈ [0,ω∗),

(
¯

p − q) · exp (y/ω∗ − 1) + q if y ∈ [ω∗, 1],

+∞ if y ∈ (1,+∞),

where ω∗ and α∗ are given by

α∗ = 1 + ln

(
p̄ − q

¯

p − q

)
,ω∗ =

1

1 + ln

(
p̄−q

¯

p−q

) .
Combining the results regarding q = 0 and q > 0, we complete the proof of Corollary 4.5.
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D PROOF OF COROLLARY 5.1
Based on Theorem 4.1 and Eq. (32), the worst-case competitive ratio of PMϕ satisfies:

• When the final resource utilization ρ ∈ [0,ω], the worst-case competitive ratio is

α1 =
h
(
¯

p
)

F
¯

p (ω)
.

This corresponds to the arrival instance that all agents have the minimum valuation density

¯

p.
• When the final resource utilization ρ = ρ̄φ , the worst-case competitive ratio is

α2 =
h(p̄)

¯

pω +
∫ ρ̄φ
ω φ(y)dy − f

(
ρ̄φ

) .
This corresponds to the worst-case scenario when the first group of agents are all satisfied by

PMϕ and all of them obtain zero utilities (i.e., the valuation equals the payment), while the

offline optimal social welfare is to satisfy all the agents in the second group whose valuation

densities are all p̄.
• When the final resource utilization ρ ∈ [ω, ρ̄φ ), the worst-case competitive ratio is

α3 = max

ρ ∈[ω, ρ̄φ )

h(φ(ρ))

¯

pω +
∫ ρ
ω φ(y)dy − f (ρ)

,

which comes from Eq. (32). The rationality of α3 is based on analyzing the competitive ratio

of PMϕ under a series of worst-case scenarios constructed in Section 5.2.

Combining the above three cases, we have

α(ω,φ) = max{α1,α2,α3}

= max

{
h
(
¯

p
)

F
¯

p (ω)
,

h(p̄)

¯

pω +
∫ ρ̄φ
ω φ(y)dy − f

(
ρ̄φ

) , max

ρ ∈[ω, ρ̄φ ]

h
(
φ(ρ)

)
¯

pω +
∫ ρ
ω φ(y)dy − f (ρ)

}
.

We thus complete the proof of Corollary 5.1. Note that when φ(1) ≥ p̄, the second term (i.e., α2) is

not needed as it is contained by α3.

E PROOF OF PROPOSITION 6.2
E.1 Background of First-Order Two-Point BVPs
For a better reference, we revisit the two BVPs in Corollary 6.1 as follows:

BVP1(ω,u,α)

{
φ ′

1
(y) = α ·

φ1(y)−f ′(y)
f ′−1(φ1(y))

,y ∈ (ω,u);

φ1(ω) =
¯

p,φ1(u) = c̄,
(71)

BVP2(u,α)

{
φ ′

2
(y) = α · (φ2(y) − f ′(y)) ,y ∈ (u, 1);

φ2(u) = c̄,φ2(1) ≥ p̄.
(72)

A solution to the above first-order two-point BVPs is a function φ1(y) or φ2(y) that satisfies the
corresponding ODE and also the two boundary conditions.

In the field of differential equations, when there is only one additional condition other than the

ODE, the resulting problem is an initial value problem (IVP). For example, the following IVP is
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derived from BVP1(ω,u,α) by excluding the first boundary condition:

IVP1(ω,u,α)

{
φ ′

1
(y) = α ·

φ1(y)−f ′(y)
f ′−1(φ1(y))

,y ∈ (ω,u);

φ1(u) = c̄,
(73)

where φ1(u) = c̄ is usually termed as the initial condition. We denote the solution to the above

IVP by φivp (y;ω,u,α) (if it exists). Meanwhile, we denote the first derivative of φivp (y;ω,u,α) w.r.t
y ∈ (ω,u) by φ ′

ivp
(y;ω,u,α).

The key to the analysis of IVPs and BVPs is the existence and uniqueness of solutions. For

first-order IVPs, the existence and uniqueness theorem is well understood. In particular, the

Picard–Lindelöf theorem [3, 35] guarantees the unique exsitence of solutions as long as the ODE

satisfies a certain Lipschitz continuity conditions. Meanwhile, there are plenty of iterative methods

off-the-shelf that can solve IVPs numerically. However, for BVPs, there is no general uniqueness

and existence theorem. As argued by [35], it is even non-trivial to obtain numerical solutions for

some BVPs in the most basic two-point case as Eq. (71) and Eq. (72).

Our optimal pricing function design in Theorem 4.3 relies on the uniqueness and existence

property of first-order two-point BVPs. On the one hand, based on the existence and uniqueness

property, we can prove that there always exists a competitive pricing function as long as the

competitive ratio α satisfies a certain condition. On the other hand, we can prove that there exists

no other online algorithms that can outperform PMϕ with a smaller competitive ratio since the

corresponding BVP has no solution.

E.2 Basic Lemmas
Our pricing function design is related to the existence, uniqueness and monotonicity property of

solutions to IVP1(ω,u,α). Note that to simplify the analysis below, we temporarily assume that

ω ∈ [0,
¯

ρ] is a given parameter. Later in our proofs of the existence of Γ1(ω,u) and Γ2(u), we will
include the discussions of ω as a design variable.

Lemma E.1. For each (α ,u) ∈ [1,+∞) × (ω, 1], IVP1(ω,u,α) has a unique solution φivp (y;ω,u,α)
that is defined over y ∈ [ω,u].

Lemma E.1 follows the Picard–Lindelöf theorem for the existence and uniqueness of solutions

to IVPs. We refer the details to [1, 3, 35]. Basically the Picard–Lindelöf theorem guarantees that

there always exists a unique solution to IVP1(ω,u,α), defined on a small neighbourhood of the

initial point φ(u) = c̄ , as long as the ODE in IVP1(ω,u,α) is Lipschitz continuous within that

neighbourhood. Moreover, this unique solution extends to the whole region of y ∈ [ω,u]. Based on

Lemma E.1, we can prove the following Lemma E.2 and Lemma E.3.

Lemma E.2. Given α ≥ 1, φivp (y;ω,u,α) is increasing in y ∈ [ω,u] and lower bounded by f ′(y)
for all y ∈ [ω,u].

Proof. We first prove that φivp (y;ω,u,α) ≥ f ′(y) holds for all y ∈ [ω,u]. Note that when y =
u ∈ (0, 1), we have φivp(u;ω,u,α) > f ′(u) and φ ′

ivp
(u;ω,u,α) > 0. Therefore, if φivp (y;ω,u,α) ≥

f ′(y) does not hold for all y ∈ [ω,u], then there must exists at least one point within (ω,u), say
y0 ∈ (ω,u), such that φivp (y;ω,u,α) > f ′(y) for all y ∈ (y0,u], φivp(y0;ω,u,α) = f ′(y0), and

φivp (y;ω,u,α) < f ′(y) for all ω ∈ (y0 − ϵ,y0), where ϵ is a small positive value. However, when

φivp (y;ω,u,α) < f ′(y), φ ′
ivp
(y;ω,u,α) is negative according to the ODE, and thus φivp (y;ω,u,α)

is decreasing in (y0 − ϵ,y0). This means that φivp (y;ω,u,α) > φivp(y0;ω,u,α) = f ′(y0) > f ′(y) for
all y ∈ (y0 − ϵ,y0), leading to a contradiction. Therefore, φivp (y;ω,u,α) ≥ f ′(y) always holds for
all y ∈ [ω,u], and the monotonicity directly follows. □
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Lemma E.2 guarantees that for any α ≥ 1 and u ∈ (ω, 1), the unique solution to IVP1(ω,u,α) is
a monotone pricing function. Below we give Lemma E.3, which states that φivp (y;ω,u,α) is also
monotonic in (u,α) ∈ (ω, 1) × [1,+∞).

Lemma E.3. φivp (y;ω,u,α) is continuous and non-increasing in (u,α) ∈ (ω, 1) × [1,+∞).

Proof. The continuity directly follows sinceφivp (y;ω,u,α) is well defined for all (u,α) ∈ (ω, 1)×
[1,+∞).

We first prove the monotonicity in u ∈ (ω, 1) by contradiction. Suppose we have u1 ∈ (ω, 1) and
u2 ∈ (ω, 1), and assume w.l.o.g. that u1 > u2, we can prove that φivp(y;ω,u1,α) < φivp(y;ω,u2,α)
holds for ally ∈ (ω,u2). The idea is that these two functions cannot have any intersection point, since

otherwise the IVP with the same ODE as IVP1(ω,u,α) but with the initial condition defined at the

intersection point will have at least two solutions, namelyφivp(y;ω,u1,α) andφivp(y;ω,u2,α), which
is impossible due to the uniqueness property given by Lemma E.1. Note that it is also impossible to

haveφivp(y;ω,u1,α) > φivp(y;ω,u2,α) since if this is the case, thenφivp(y;ω,u1,α) is not monotonic

in y ∈ (ω,u1). Therefore, when u1 > u2, we always have φivp(y;ω,u1,α) < φivp(y;ω,u2,α).
We now prove the monotonicity in α ∈ [1,+∞). Suppose we have α1 and α2, and assume w.l.o.g.

that α1 > α2. We need to prove that φivp(y;ω,u,α1) < φivp(y;ω,u,α2) for all y ∈ (ω,u]. Based on

the ODE of (73), when α1 > α2, the derivative of φ at y = u satisfies

φ ′
ivp
(u;ω,u,α1) > φ

′
ivp
(u;ω,u,α2).

Therefore, there must exist a small interval on the left-hand-side of u, say [u − ϵ,u], where ϵ is a
small positive value, such that φivp(y;ω,u,α1) < φivp(y;ω,u,α1) for all y ∈ [u − ϵ,u]. This can be

easily proved based on the definition of the derivative, which is omitted for brevity.

Now suppose φivp(y;ω,u,α1) < φivp(y;ω,u,α2) does not hold for all y ∈ [ω,u], then there must

exist an intersection point u0, such that φivp(y;ω,u,α1) < φivp(y;ω,u,α2) when y ∈ (u0,u], and
φivp(y;ω,u,α1) ≥ φivp(y;ω,u,α2) when y ∈ (u0 − ϵ,u0], where ϵ is a very small positive value. Now

let us consider two new IVPs with the same initial condition defined at point y = u0, and denote

the unique solutions to these two new IVPs by φnew(y;ω,u0,α1) and φnew(y;ω,u0,α2), according

to the uniqueness property, we must have

φnew(y;ω,u0,α1) = φivp(y;ω,u,α1),∀y ∈ (ω,u0),

φnew(y;ω,u0,α2) = φivp(y;ω,u,α2),∀y ∈ (ω,u0).

Since φivp(y;ω,u,α1) ≥ φivp(y;ω,u,α2) when y ∈ (u0 − ϵ,u0], which means that we cannot

find a small interval on the left-hand-side of u0, say [u0 − ϵ̂,u0], such that φnew(y;ω,u0,α1) <
φnew(y;ω,u0,α2). However, this contradicts with the fact that

φ ′
new

(u0;ω,u0,α1) > φ
′
new

(u0;ω,u0,α2).

Therefore, we have φivp(y;ω,u,α1) < φivp(y;ω,u,α2) for all y ∈ (ω,u]. We thus complete the

proof. □

E.3 Proof of the Existence of Γ1(ω,u)

We now prove the unique existence of a well-defined function Γ1(ω,u) in the first bullet of Proposi-

tion 6.2.

Our proof is based on the idea of “shooting method" in ODE [3, 35]. Here we briefly explain

the intuition. For each given ω ∈ [0,
¯

ρ] and u ∈ (ω, 1), based on the ODE in Eq. (73), when α
approaches infinity, φ1(y) must be very close to f (y) when y approaches ω from the right, namely,

φ1(ω) approaches f
′(ω). In this case, φ1(ω) ≤

¯

p. Similarly, when α is very small, say approaches

zero (our definition of α requires that α ≥ 1, here we purely focus on the numerical analysis of
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10
u

α

ω

Γ2(u)

u(ω)

Γ1(ω, u)

α(ω)

Fig. 5. Illustration of the unique existence of the intersection point u(ω) between Γ1(ω,u) and Γ2(u) for a
given ω ∈ (0,

¯

ρ).

the IVP given by Eq. (73)), then φ1(ω) must be very close to c̄ since φ ′
1
(y) will be close to 0 and

thus φ1(y) will be almost horizontal. In this case, φ1(ω) ≥
¯

p. The monotonicity property in Lemma

E.3 indicates that there must exist a unique α in between so that φ(ω) is exactly equal to

¯

p. In the

“shooting method", this indicates the value setting of α hits the target of φ(ω) =
¯

p. In summary, for

a given ω ∈ [0,
¯

ρ] and u ∈ (ω, 1), there exists a unique α so that the unique solution to the IVP in

Eq. (73) is the unique solution to the BVP in Eq. (71). We thus complete the proof of the existence

of α = Γ1(ω,u).

E.4 Proof of the Existence of Γ2(u)

Proving the unique existence of α = Γ2(u) is more straightforward as the ODE in Eq. (72) can be

solved in analytical forms. To be more specific, the general solution can be written as follows:

φ2(y) = exp(αy) ·

(∫ y α f ′(η)

exp(αη)
f ′(η)dη +C

)
,

where C is any real constant. Substituting the two boundary conditions into the above general

solution leads to the following

φ2(u) = exp(α · u) ·

(∫ u α f ′(η)

exp(αη)
dη +C

)
= c̄,

φ2(1) = exp(α · 1) ·

(∫
1 α f ′(η)

exp(αη)
dη +C

)
≥ p̄,

which thus indicates that ∫
1

u

α f ′(η)

exp(αη)
dη ≥

p̄

exp(α)
−

c̄

exp(uα)
(74)

We can prove that for each given u ∈ (0, 1) , there exists a unique α that satisfies Eq. (74) by

equality as long as p̄ > c̄ . The proof is similar to that of α = Γ1(ω,u) as any given setup of p̄ > c̄
will guarantee the existence of a monotone function φ2(y) in the interval [u, 1] with an appropriate

setting of α . Moreover, this α must be unique as otherwise the uniqueness property in Lemma

E.1 would be contradicted. Therefore, if we denote this unique α by α = Γ2(u), then we complete

the proof of the existence of Γ2(u). However, note that in the second bullet of Proposition 6.2, we

argue that for any α ≥ Γ2(u), the BVP in Eq. (72) will have a unique monotone solution. This can

be proved by the monotonicity of φ2(y) w.r.t. α , similar to our proof of Lemma E.3, and thus we

skip the details for brevity. In summary, for each given u ∈ (0, 1) , there exists a unique solution to

BVP2(u,α) as long as α ≥ Γ2(u). We thus complete the proof of Proposition 6.2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 2, Article 24. Publication date: June 2020.



Mechanism Design for Online Resource Allocation: A Unified Approach 24:39

F PROOF OF THEOREM 6.3
The proof of Theorem 6.3 heavily relies on the monotonicity properties of ϕ w.r.t ω,u, and α . To
achieve the minimum α , we make the following claims:

• Claim 1: ω must be as small as possible. Since a larger ω will shrink the interval of [ω, 1],
and the value of α must be increased as the overall slope the pricing function will be steeper.

For any α , to minimize the choice of ω, we set

α =
h(

¯

p)

F
¯

p (ω)
or ω = F−1

¯

p

(
1

α
h
(
¯

p
) )
.

• Claim 2: for each given ω ∈ [F−1

¯

p
(

1

α h
(
¯

p
) )
,
¯

ρ], Γ1(ω,u) is strictly decreasing in u ∈ (ω, 1).

Meanwhile, Γ2(u) is strictly increasing in u ∈ (ω, 1). The proof of the monotonicity of Γ1(ω,u)
and Γ2(u) is elementary based on our analysis in Appendix E above. To visualize the intuition,

Fig. 5 illustrates Γ1(ω,u) and Γ2(u) w.r.t. u ∈ (ω, 1) for a given ω. We can prove that for any

ω ∈ (0, ρ̄], there exists a unique u(ω) such that Γ1(ω,u(ω)) = Γ2(u(ω)), as illustrated by the

intersection point in Fig. 5. The proof is straightforward by evaluating the values of Γ1(ω,u)
and Γ2(u) at their two boundaries, e.g., Γ1(ω,u) and Γ2(u) approaches infinity if u approaches

ω and 1, respectively, Therefore, the monotonicity of Γ1(ω,u) and Γ2(u) indicates that there
must exist a unique intersection point u(ω) in the interval [ω, 1]. To minimize α , we simply

choose u = u(ω) so that α = α(ω) is minimized for a given ω ∈ [ω,
¯

ρ].

Based on the above two claims, to minimize α(ω), we must set ω = F−1

¯

p

(
1

α h
(
¯

p
) )
. In this case the

unique intersection point between Γ1(ω,u) and Γ2(u) is the optimal design of u, and the correspond-
ing α is the minimum competitive ratio, i.e., α∗(S). In summary, the optimal design of ω and u is

the unique solution to the following system of equations

h
(
¯

p
)

F
¯

p (ω∗)
= Γ1(ω∗,u∗) = Γ2(u∗).

We thus complete the proof of Theorem 6.3.

G REMAINING PROOFS OF THEOREM 4.3 IN CASE-2 AND CASE-3
In this section, we provide the remaining proofs of Theorem 4.3 in Case-2 and Case-3.

G.1 Case-2: c < c ≤ p ≤ p

In this case, c̄ ≤
¯

p ≤ p̄ indicates that
¯

ρ = ρ̄ = 1. Meanwhile, there exist no such a resource utilization

threshold u so that ϕ(u) = c̄ , as illustrated in Fig. 1(c). Based on Theorem 4.1 and Theorem 4.2,

we give the following Corollary G.1 which summarizes the sufficient and necessary conditions in

Case-2.

Corollary G.1. Given a convex setup S in Case-2, PMϕ is IC and α-competitive if there exists a
critical threshold ω ∈ [F−1

¯

p
(

1

α h
(
¯

p
) )
, 1] such that ϕ is given by

ϕ(y) =


¯

p, if y ∈ [0,ω],

φ̂2(y), if y ∈ [ω, 1],

+∞, if y ∈ (1,+∞),

(75)
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where φ̂2(y) is a solution to the following BVP:

B̂VP2(ω,α)

{
φ̂ ′

2
(y) = α ·

(
φ̂2(y) − f ′(y)

)
,y ∈ (ω, 1);

φ̂2(ω) =
¯

p, φ̂2(1) ≥ p̄.
(76)

On the other hand, if there exists an α-competitive online algorithm, then there must exist a strictly-
increasing solution to B̂VP2(ω,α) for some ω ∈ [F−1

¯

p
(

1

α h
(
¯

p
) )
, 1].

Proof. The proof is similar to our previous analysis regarding Corollary 6.1 in Case-1. □

Similar to Proposition 6.2, we give the following Proposition G.2 to show the existence of function

Γ̂2(ω).

Proposition G.2. For each given ω ∈ [0, 1), B̂VP2(ω,α) has a unique strictly-increasing solution
if and only if α ≥ Γ̂2(ω), where Γ̂2(ω) satisfies the following equation in variable Γ̂2:∫

1

ω

Γ̂2 f
′(y)

exp

(
yΓ̂2

) dy = p̄

exp

(
Γ̂2

) − ¯

p

exp

(
ω Γ̂2

) . (77)

Proof. Eq. (77) is similar to Eq. (46) and thus we omit the proof for brevity. □

Based on Proposition G.2, we give the following Theorem G.3 to show the unique existence of

ω∗ as well as the calculation of α∗(S) in Case-2.

Theorem G.3. Given a convex setup S in Case-2, there exists a unique ω∗ ∈ (0, 1) such that the
optimal competitive ratio α∗(S) is given by

α∗(S) =
h
(
¯

p
)

F
¯

p (ω∗)
= Γ̂2(ω∗), (78)

where ω∗ ∈ [0, 1) is the unique root that satisfies Eq. (78). Meanwhile, PMϕ is α∗(S)-competitive if
and only if ϕ is given by Eq. (75) with (ω,α) = (ω∗,α∗(S)).

Proof. The result follows similarly as Theorem 6.3. □

Note that in Case-2, the calculation of the unique ω∗ is equivalent to finding the unique root to

the following equation∫
1

ω∗

h
(
¯

p
)

F
¯

p (ω∗)
· exp

(
−

h
(
¯

p
)

F
¯

p (ω∗)
· y

)
· f ′(y) dy = p̄ · exp

(
−

h
(
¯

p
)

F
¯

p (ω∗)

)
−

¯

p · exp

(
−

h
(
¯

p
)

F
¯

p (ω∗)
· ω∗

)
.

G.2 Case-3: c < p ≤ p ≤ c

In this case,

¯

c <
¯

p ≤ p̄ ≤ c̄ indicates that
¯

ρ ≤ ρ̄ ≤ 1. Meanwhile, there exist no such a threshold

u ∈ (0, 1) so that ϕ(u) = c̄ , as illustrated in Fig. 2(d). Based on Theorem 4.1 and Theorem 4.2, we give

the following Corollary G.4 which summarizes the sufficient and necessary conditions in Case-3.

Corollary G.4. Given a convex setup S in Case-3, PMϕ is IC and α-competitive if there exists a
pair of resource utilization thresholds (ω, ρ) ∈ [F−1

¯

p
(

1

α h
(
¯

p
) )
,
¯

ρ] × [ω, ρ̄] such that ϕ is given by

ϕ(y) =


¯

p, if z ∈ [0,ω],

φ̂1(y), if z ∈ [ω, ρ],

+∞, if z ∈ (ρ, 1],

(79)
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where φ̂1(y) is a solution to the following BVP:

B̂VP1(ω, ρ,α)


φ̂ ′

1
(y) = α ·

φ̂1(y)−f ′(y)

f ′−1

(
φ̂1(y)

) ,y ∈ (ω, ρ);

φ̂1(ω) =
¯

p, φ̂1(ρ) ≥ p̄.
(80)

On the other hand, if there exists an α-competitive online algorithm, then there must exist a strictly-
increasing solution to B̂VP1(ω, ρ,α) for some pair of (ω, ρ) ∈ [F−1

¯

p
(

1

α h
(
¯

p
) )
,
¯

ρ] × [ω, ρ̄].

Proof. The proof is similar to our analysis of Theorem 6.3. □

Similar to Proposition 6.2, we give the following Proposition G.5 to show the existence of function

Γ̂1(ω, ρ).

Proposition G.5. Given a convex setup S in Case-3, for each given pair of (ω, ρ) ∈ [0,
¯

ρ) × (ω, ρ̄],
there exists a well-defined function Γ̂1(ω, ρ) so that B̂VP1(ω, ρ,α) has a unique strictly-increasing
solution if and only if α ≥ Γ̂1(ω, ρ).

Proof. The result follows the first bullet in Proposition 6.2. □

Based on Proposition G.5, we give the following Theorem G.6 to show the calculation of α∗(S)
in Case-3.

Theorem G.6. Given a convex setup S in Case-3, there exists a unique ω∗ ∈ [0,
¯

ρ] such that the
optimal competitive ratio α∗(S) is given by

α∗(S) =
h
(
¯

p
)

F
¯

p (ω∗)
= Γ̂1 (ω∗, ρ̄) , (81)

where ω∗ is the unique root that satisfies Eq. (81). Meanwhile, PMϕ is α∗(S)-competitive if and only if
ϕ is given by Eq. (79) with (ω, ρ,α) = (ω∗, ρ̄,α∗(S)).

Proof. The proof is similar to our analysis of Theorem 6.3. □

Based on Theorem 6.3, Theorem G.3, and Theorem G.6, Theorem 4.3 follows. We thus complete

the proof of Theorem 4.3 in all the three cases.

Remark 7. Based on Theorem 6.3, Theorem G.3, and Theorem G.6, we conclude that the upper bound
of the optimal pricing function is always equal to the maximum valuation density, namely, ϕ∗(ρ̄) = p̄.
Note that compared to ϕ∗(ρ̄) > p̄, by setting ϕ∗(ρ̄) = p̄ we can have a higher resource utilization level
while still guarantee the competitive ratio of PMϕ . The intuition here is that it is always beneficial to
have a higher resource utilization level as long as the resources are sold at the right price.

H PROOF OF COROLLARY 4.4
The properties of α∗(S) directly follow the monotonicity of Γ1(ω,u) and Γ2(u). We briefly explain

them as follows:

• For a given p̄ ∈ (
¯

c,+∞), we claim that Γ1(ω,u) is strictly decreasing in

¯

p ∈ (
¯

c, p̄]. We use

Case-1 to explain the intuition. A larger

¯

p indicates a smaller value of c̄ −
¯

p, and thus for a

given ω and u, the pricing function φ1 can increase from

¯

p to c̄ with a smaller rate. A smaller

increasing rate of φ1 indicates that the value of α can be smaller as well. Therefore, Γ1(ω,u)
is decreasing in

¯

p ∈ (
¯

c, p̄]. As we can see from Fig. 5, a smaller Γ1(ω,u) indicates a smaller

value of u(ω) (note that Γ2(u) will not change w.r.t. the increasing of
¯

p), as well as a smaller

value of α(ω), which thus leads to a smaller value of α∗(S) in the end. Therefore, α∗(S) is
strictly decreasing in

¯

p ∈ (
¯

c, p̄] for a given p̄ ∈ (
¯

c,+∞).
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• We can prove similarly that α∗(S) is strictly increasing in p̄ ∈ [
¯

p,+∞) for a given
¯

p ∈ (
¯

c,+∞).

We skip the details for brevity.

• Note that

¯

p = p̄ ∈ (
¯

c,+∞) happens only in Case-2 and Case-3. For instance, in Case-2,

¯

p = p̄ ∈ (c̄,+∞) indicates that φ̂2(ω∗) = φ̂2(1) =
¯

p = p̄, where φ̂2 is the unique solution to the

BVP in Eq. (76). We argue that such a solution occurs only when ω∗ = 1 and in this case the

optimal competitive ratio α∗(S) = 1 since both the online and offline strategies are to satisfy

all the request until reaching the total capacity limit. We can prove similarly that in Case-3,
ω∗ =

¯

ρ and α∗(S) = 1 as long as

¯

p = p̄ ∈ (
¯

c, c̄]. Combining the results in both cases, we have

α∗(S) = 1 and ω∗ =
¯

ρ when

¯

p = p̄ ∈ (
¯

c,+∞).

We thus complete the proof of Corollary 4.4.

I PROOF OF THEOREM 5.2
Before presenting the proof of Theorem 5.2, we first give the extension of PMϕ in Algorithm 2.

Algorithm 2: Posted Price Mechanism (PMϕ )

1: Inputs: A given setup S = { ft ,
¯

pt , p̄t }∀t ∈T and ϕ = {ϕt }∀t ∈T .
2: Initialize: ŷ(0)t = 0 and p̂(0)t = ϕ(ŷ

(0)
t ) for all t ∈ T .

3: while a new agent n arrives do
4: Supplier publishes the price p̂(n−1)

t for t ∈ T .

5: if vn −
∑

t ∈Tn r
t
n · ϕt

(
y(n−1)
t

)
< 0 then

6: Agent n leaves (i.e., set x̂n = 0)

7: else if ŷ(n−1)
t + r tn > 1 for any t ∈ T then

8: Request n is rejected (i.e., set x̂n = 0)

9: else
10: Request n is satisfied (i.e., set x̂n = 1)

11: Set the payment π̂n by π̂n =
∑

t ∈Tn r
t
n · ϕt

(
y(n−1)
t

)
.

12: Update the total resource utilization by ŷ(n)t = ŷ
(n−1)
t + r tn , ∀t ∈ T .

13: Update the price by p̂(n)t = ϕt
(
ŷ(n)t

)
,∀t ∈ T .

14: end if
15: end while

Based on Algorithm 2, the sufficient conditions of Theorem 5.2 can be derived based on Propo-

sition 3.1 as follows. We first prove that there indeed exists an index k ∈ N such that the initial

inequality hold. The major argument is that in the worst-case, each agent may only require resource

for a single time slot, leading to the existence of a critical threshold ωt for each t ∈ T . Specifically,

suppose k ∈ N and after processing all the agents within {1, 2, · · · ,k}, we have

Pk =
k∑

n=1

vn −
∑
t ∈T

¯ft (ŷ
(k )
t ) =

k∑
n=1

(
γ̂n +

∑
t ∈T

r tn · ϕt (y
(n−1)
t )

)
−

∑
t ∈T

¯ft (ŷ
(k)
t ).

The dual objective after processing request k is given by

Dk =

k∑
n=1

γ̂n +
∑
t ∈T

ht (p̂
(k )
t ).
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Based on the pricing function given by Eq. (38), the initial inequality Pk ≥ 1

αt
Dk leads to the

following (
1 −

1

αt

) k∑
n=1

γ̂n +
∑
t ∈T ¯

pt ·

(
k∑

n=1

r tn

)
−

∑
t ∈T

¯ft

(
k∑

n=1

r tn

)
≥

1

αt

∑
t ∈T

ht
(
¯

pt
)
.

Since αt ≥ 1 and γ̂n ≥ 0, it suffices to have the following inequality for each time slot:

¯

pt ·

(
k∑

n=1

r tn

)
− ¯ft

(
k∑

n=1

r tn

)
≥

1

αt
ht

(
¯

pt
)
. (82)

The above inequality Eq. (82) holds if the following one holds:

¯

ptωt − ¯ft (ωt ) = F
¯

pt (ωt ) ≥
1

αt
ht

(
¯

pt
)
,

where ωt =
∑k

n=1
r tn . Meanwhile, for the same reason as the previous basic resource allocation

model, it is obvious that ωt must be less than or equal to

¯

ρt because the selling price must be larger

than or equal to the marginal cost, i.e,. ϕt (ωt ) =
¯

pt ≥ f ′t (ωt ). Therefore, Eq. (39) indicates that the

initial inequality Pk ≥ 1

αt
Dk holds for some k ∈N.

We next prove the ordinary differential inequality in Eq. (40). The change in the primal objective

is given as follows:

Pn − Pn−1 = vn −
∑
t ∈T

(
¯ft (ŷ

(n)
t ) − ¯ft (ŷ

(n−1)
t )

)
= γ̂n +

∑
t ∈T

ϕt (ŷ
(n−1)
t )

(
ŷ(n)t − ŷ(n−1)

t

)
−

∑
t ∈T

(
¯ft (ŷ

(n)
t ) − ¯ft (ŷ

(n−1)
t )

)
.

The change in the dual objective is given as follows:

Dn − Dn−1 = γ̂n +
∑
t ∈T

(
ht (p̂

(n)
t ) − ht (p̂

(n−1)
t )

)
.

To guarantee that Pn − Pn−1 ≥ 1

α (Dn − Dn−1) holds, it is equivalent to having the following(
1 −

1

αt

)
γ̂n +

∑
t ∈T

(
ϕt (ŷ

(n−1)
t )

(
ŷ(n)t − ŷ(n−1)

t
)
−

(
¯ft (ŷ

(n)
t ) − ¯ft (ŷ

(n−1)
t )

) )
≥

1

αt

∑
t ∈T

(
ht (p̂

(n)
t ) − ht (p̂

(n−1)
t )

)
,

where the first term γ̂n ≥ 0 always holds. Therefore, if the following inequality holds at each round,

then the incremental inequality holds as well:∑
t ∈T

(
ϕt (ŷ

(n−1)
t )

(
ŷ(n)t − ŷ(n−1)

t
)
−

(
¯ft (ŷ

(n)
t ) − ¯ft (ŷ

(n−1)
t )

) )
≥

1

αt

∑
t ∈T

(
ht (p̂

(n)
t ) − ht (p̂

(n−1)
t )

)
. (83)

To guarantee that Eq. (83) holds, it suffices to have the following per-slot inequality

ϕt (ŷ
(n−1)
t )

(
ŷ(n)t − ŷ(n−1)

t

)
−

(
¯ft (ŷ

(n)
t ) − ¯ft (ŷ

(n−1)
t )

)
≥

1

αt

(
ht (p̂

(n)
t ) − ht (p̂

(n−1)
t )

)
,

which is equivalent to the following:

ϕt (ŷ
(n−1)
t ) −

¯ft (ŷ
(n)
t ) − ¯ft (ŷ

(n−1)
t )

ŷ(n)t − ŷ(n−1)
t

≥
1

αt
·

ht
(
ϕt (ŷ

(n)
t )

)
− ht

(
ϕt (ŷ

(n−1)
t )

)
ϕt (ŷ

(n)
t ) − ϕt (ŷ

(n−1)
t )

·
ϕt (ŷ

(n)
t ) − ϕt (ŷ

(n−1)
t )

ŷ(n)t − ŷ(n−1)
t

.
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Therefore, we have the following inequality in the differential form:

ϕt (y) − ¯f ′t (y) ≥
1

αt
· h′

t
(
ϕt (y)

)
· ϕ ′

t (y),∀y ∈ [ωt , 1). (84)

This means, if Eq. (84) holds for all y ∈ [ωt , 1), then the incremental inequality holds at each round

for all y ∈ [ωt , 1).
Similar to our previous analysis, we need to guarantee that the incremental inequality holds

at each round for all y ∈ [ωt , 1]. Therefore, we need to consider the boundary condition of ϕt (y)
when y = 1. First, it is obvious that ϕt (ωt ) =

¯

pt as the pricing function ϕt must be continuous.

Taking integration of both sides of Eq. (84) leads to∫ ρt

ωt
ϕt (y)dy − ¯ft (ρt ) + ¯ft (ωt ) ≥

1

αt

(
ht

(
ϕt (ρt )

)
− ht

(
¯

pt
) )
,

where ρt denotes the final utilization level at time slot t ∈ T . Meanwhile, based on the flat-segment,

we have

¯

ptωt − ¯ft (ωt ) ≥
1

αt
ht (

¯

pt ). Thus, we have

¯

ptωt +

∫ ρt

ωt
ϕt (y)dy − ¯ft (ρt ) ≥

1

αt
ht

(
ϕt (ρt )

)
,

which is the same as Eq. (57). When ρt = 1, the above equality also holds, and thus we have

¯

ptωt +

∫
1

ωt
ϕt (y)dy − ¯ft (1) ≥

1

αt
ht

(
ϕt (1)

)
.

On the other hand, PMϕ is αt -competitive indicates that the following inequality must hold:

¯

ptωt +

∫
1

ωt
ϕt (y)dy − ¯ft (1) ≥

1

αt

∑
t ∈T

ht (p̄t ), (85)

where the right-hand-side represents the optimal social welfare in the offline setting when the

resource at time t has been used up. Note that here the worst-case scenario is different from the
single time slot case. The rationality of Eq. (85) is as follows. When the resource at time t is used
up by agents whose valuation equals the payment, let us assume that there is a follow-up arrival
instance which consists of two groups of agents as follows: i) the first group of agents ask for resource
at time t with the maximum valuation density p̄t , and ii) the second group of agents ask for resources
at time t as well as at time t̂ with the maximum valuation density p̄t̂ , ∀t̂ ∈ T\{t}. Meanwhile, we
assume that the number of agents in these two groups are large enough so that the total capacity
of each time slot can be used up. In the online setting, the social welfare is given by the left-hand-
side of Eq. (85), meaning that the valuation of the accepted agents are all equal to their payments,
while the follow-up agents are all rejected due to the capacity limit at time t . In comparison, in the
offline setting, the optimal social welfare is to allocate all the capacity at time t to those agents in
the follow-up instance whose valuation densities are p̄t , ∀t ∈ T , as a result, the optimal optimal
social welfare in hindsight is

∑
t ∈T ht (p̄t ), as given by the right-hand-side of Eq. (85). Therefore,

to guarantee that the above Eq. (85) holds, it suffices to have the following boundary condition:

ϕt (1) − ft (1) ≥
∑

t ∈T ht (p̄t ) =⇒ ϕt (1) ≥ p̄t +
∑

t̂ ∈T\{t } ht̂ (p̄t̂ ).
Summarizing our above proofs regarding the critical threshold, the differential inequality and

the boundary conditions, we complete the proof of Theorem 5.2.

(Impacts of Multiple Time Slots on the Competitive Ratio) Based on the second boundary condition

in Eq. (40), ϕt (1) follows roughly linearly w.r.t. the total number of time slots. For example, when

we assume p̄t ≥ c̄t for all t ∈ T , then the second boundary condition in Eq. (40) indicates that

ϕt (1) ≥ p̄t +
∑

t̂ ∈T\{t } ht̂ (p̄t̂ ) =
∑

t ∈T p̄t −
∑

t̂ ∈T\{t } ft̂ (1). Our previous analysis regarding the basic
model shows that the calculation of the optimal competitive ratio α∗(S) depends on the boundary
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condition of ϕ∗ (i.e., the monotonicity of α∗(S) in Corollary 4.4). Therefore, in the case with multiple

time slots, the final competitive ratio α = maxt {αt } depends on |T | as well. As we mention in the

conclusion of the paper, it is difficult to analyze the property of α∗(S) w.r.t.
¯

p and p̄. Similarly, here

it is also difficult to analyze the dependency of α on the total number of time slots. We leave this

for future research.

(Necessary Conditions) The necessary conditions in Theorem 4.2 can also be generalized to

consider the case with multiple time slots. We skip the details for brevity as most of the proofs

are similar to our previous analysis in the paper, except that the worst-case analysis regarding the

boundary conditions should be performed in a different manner, as demonstrated by Eq. (85).

J COMPUTATION OF ω∗, u∗, AND α∗(S)

In this section, we present the algorithms for computing ω∗, u∗, and α∗(S) in Case-1. We skip the

computational details regarding Case-2 and Case-3 for brevity.

We give Algorithm 3 below to show the calculation of Γ1(ω,u) for a given ω and u. We also give

Algorithm 4 to show the calculation of Γ2(u) for a given u. Based on GAMMA1(ω,u) in Algorithm 3

and GAMMA2(u) in Algorithm 4, Algorithm 5 shows the calculation of ω∗, u∗, and α∗(S) for a given
convex setup S.

Algorithm 3: GAMMA1(ω,u)

1: Inputs: A given setup S = { f ,
¯

p, p̄}, ω, u, and ϵ . Set α1 = 1, α2 = R1, and φ1(u) = R2.

2: while |φ1(u) − c̄ | > ϵ do
3: Compute α0 =

α1+α2

2
.

4: Solve the following IVP and obtain the solution φ1(y):

IVP(ω,u,α0)

{
φ ′

1
(y) = α0 ·

φ1(y)−f ′(y)
f ′−1(φ1(y))

,y ∈ (ω,u);

φ1(ω) =
¯

p.

5: if φ1(u) > c̄ then
6: α2 = α0.

7: else
8: α1 = α0.

9: end if
10: end while
11: Γ1(ω,u) = α0.

12: Outputs: Γ1(ω,u).

We can see that Algorithm 3 performs a bisection search for the unique output of Γ1(ω,u). Note
that ϵ is a constant that is sufficiently small. In both Algorithm 3 and Algorithm 4, R1 and R2 are

two large positive constants that can be initialized appropriately based on the setup S. In line 4 of

Algorithm 3, we need to solve the IVP parameterized by ω,u, and α0. We emphasize that solving

IVP(ω,u,α0) in this step is light-weight and various off-the-shelf methods/solvers can be used.

Algorithm 5 searches between [0, 1] for the unique u∗. Based on the unique u∗, the optimal critical

threshold ω∗ can be given by line 5 of Algorithm 5. Recall that in Algorithm 5, F−1

¯

p denotes the

inverse of F
¯

p , which is defined by Eq. (8).

Before ending this section, we give the following remark regarding the implementation of PMϕ∗
.

Remark 8. It is worth pointing out that the calculation of ϕ∗ in a numerical manner should not be
a concern for the online implementation of PMϕ∗

. On the one hand, our above algorithms shows that
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Algorithm 4: GAMMA2(u)

1: Inputs: A given setup S = { f ,
¯

p, p̄}, u, and ϵ . Set α1 = 1, α2 = R1, and GAP = R2.

2: while |GAP | > ϵ do
3: Compute α0 =

α1+α2

2
.

4: Set GAP =
∫

1

u
α0f ′(y)

exp(yα0)
dy −

(
p̄

exp(α0)
+ c̄

exp(uα0)

)
.

5: if GAP > 0 then
6: α2 = α0.

7: else
8: α1 = α0.

9: end if
10: end while
11: Γ2(u) = α0.

12: Outputs: Γ2(u).

Algorithm 5: Calculation of ω∗, u∗, and α∗(S)

1: Inputs: A given setup S = { f ,
¯

p, p̄} and ϵ . Set u1 = 0, u2 = 1, and GAP = 1.

2: while |GAP | > ϵ do
3: Compute u∗ =

u1+u2

2
.

4: Γ2(u∗) = GAMMA2(u∗).

5: Set ω∗ = F−1

¯

p
( h(

¯

p)
Γ2(u∗)

)
.

6: Γ1(ω∗,u∗) = GAMMA1(ω∗,u∗).
7: Set GAP = Γ2(u∗) − Γ1(ω∗,u∗).
8: if GAP > 0 then
9: u2 = u∗.
10: else
11: u1 = u∗.
12: end if
13: end while
14: Set α∗(S) = GAMMA1(ω∗,u∗) = GAMMA2(u∗).
15: Outputs: ω∗,u∗,α∗(S).

the computation of ω∗,u∗ and α∗(S) can be performed efficiently via various numerical root-finding
methods such as bisection searching. On the other hand (and perhaps more importantly), for a given
convex setup S, the parameters α∗(S),ω∗, and u∗ can be computed offline before the start of PMϕ∗

.
This means, we only need to solve either BVP1(ω∗,u∗,α∗) or BVP2(u∗,α∗) “on-the-fly", depending on
which segment the total resource utilization level is located.
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