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Abstract—Demand side management (DSM) exploits flexibility
of the end-user side to help improve the performance of the power
grid. However, how to model and evaluate the multi-dimensional
flexibility (MDF) of the energy consumers (such as the flexibilities
in terms of energy, power, time period and locations, etc.) is an
important and challenging issue. To handle this, we propose a
day-ahead market design for the MDF services. In this market,
the MDF aggregators need to submit the characteristics of
their virtual battery models and parametric reward functions,
which represent the aggregate load flexibilities and the required
remunerations, respectively. One key feature of this new market
is that the system operator is allowed to accept only a portion
of every bid instead of the whole of them. This can bring more
flexibilities for the operator to minimize the total system cost.
With various case studies on a 6-bus transmission network, we
show that this market can help flatten the locational marginal
prices (LMPs) across the peak load period. Moreover, we show
that even if the MDF bids at different buses are the same, the
clearing results can be quite different, which reflect the practical
values of different load flexibilities from the perspective of the
system operator.

I. INTRODUCTION

Demand side management (DSM) is an important feature
of smart grids, which exploits the flexibility of the energy
consumers to help improve the performance of the electric grid
[1]. In traditional power systems, it is the generation side that
adapts the generator outputs to the change of the loads in order
to maintain the balance between the supply and the demand.
However, as more and more renewable energy sources (RES)
are integrated into the grid, it becomes challenging to maintain
the balance by solely relying on the supply side because of
the intermittent nature of RES. In this regard, to efficiently
leverage the flexibility of the electricity users is one of the
promising schemes to help overcome the limits of traditional
power systems.

DSM includes everything that is done on the demand side
of an energy system, ranging from exchanging old incandes-
cent light bulbs to compact fluorescent lights (CFLs) up to
installing a sophisticated dynamic load management system
[2]. Among those different kinds of DSM schemes, demand
response (DR) is a main category which has been drawing a
lot of attention [3], [4].

DR can be defined as the changes in electricity usage by
end-use customers from their normal consumption patterns in
response to changes in the price of electricity over time [3].
There are mainly two categories of DR programs [4]. One is

the price-based program (PBP) which uses dynamic pricing
rates in order to induce the energy users to shift or curtail
their loads such that the demand curve can be flattened. The
other one is the incentive-based program (IBP) where direct
load control is enabled such that the system operator has the
authority to optimally manage the flexible loads. In return,
the participants will be rewarded depending on the service
they provide. Compared with PBP, IBP has some advantages.
One of them is that those controllable loads are managed in
a centralized way and hence, the aggregate benefits from all
participants can be maximized in a systematic manner. While,
in PBP, the system has to rely on the voluntary responses of
the consumers to the price signals where lots of efforts need
to be made for predicting the individual behavior of different
energy users [5].

In both programs, the pricing problem is an important issue.
One effective method is the smart pricing [6]–[8]. In [6], a
real-time pricing algorithm for DSM programs is introduced
to encourage desired energy consumption behaviors among
users and to keep the total consumption level below the
power generation capacity. In [7], a smart pricing method is
proposed by using Vickrey-Clarke-Groves (VCG) mechanism.
It aims to maximize the social welfare, i.e., the aggregate
utility functions of all users minus the total energy cost,
while guaranteeing the efficiency and user truthfulness at
the equilibrium. Another type of method is market-based. In
[8], a demand-side bidding mechanism is proposed, in which
demand-side bids include Price Elasticity Matrices (PEM)
that represent any hour’s load responsiveness to prices across
time periods within the market’s time-frame. An algorithm
is designed to help the market administrator determine the
dispatch of the flexible loads and the market clearing price.

One limitation in the aforementioned work is that the net-
work constraints have been ignored. In contrast, the transmis-
sion network constraints are included in the form of DC power
flows in [9] where a social welfare maximization problem
is solved, with the objective of the total user utility minus
the total generation cost for day-ahead system scheduling. To
handle the problem with large-scale integration of DR from
small loads, a decomposition algorithm is developed based on
the dual decomposition.

Another issue in those literature is that the multi-
dimensional flexibility (MDF) that can be provided by differ-
ent types of DR participants has not been captured. The MDF



can include the following aspects of a flexible load: i) the total
energy consumption requirement which can be within a certain
range; ii) the power rating for consuming the energy which
can be adjusted according to different conditions; iii) the time
interval of the DR service which may also be flexible such as
the charging of electric vehicles (EVs); and iv) the location of
the flexible loads in the network which is also a very important
aspect and the mobility of EVs has the potential of this
locational flexibility. Some works in the literature have taken
different dimensions of those flexibility into account [10]–
[13] and various markets are designed for differentiated-energy
services. In [10], a forward market framework for the deadline
differentiated-energy services [13] is studied, where consumers
consent to deferred supply of energy in exchange for a reduced
per-unit energy price. In addition, a mechanism consisting
of an earliest-deadline-first policy is proposed to solve the
constrained stochastic optimal control problem. Moreover,
they have shown that their method can achieve an efficient
competitive equilibrium that simultaneously maximizes the
supplier’s profit and the social welfare. Similarly, some works
have considered the market for other kinds of flexible energy
services such as: i) rate-constrained energy services where the
maximum rate at which the energy may be delivered to the
consumers is considered as a key characteristic [12]; and ii)
duration-differentiated energy services in which the flexibility
resides in the fact that the power may be delivered at any time
so long as the total duration of service is equal to the load’s
specified duration.

Different from those works in the literature where specific
forward markets are designed for different flexible energy
services, the present work proposes a unified market frame-
work for MDF services. Specifically, each MDF service is
composed of the following key attributes: i) a user specified
service period (e.g., 10 a.m. to 4 p.m.); ii) the maximal load
adjustment with respect to the base load reference (normal
consumption) during the service period and iii) the maximal
load adjustment per unit time slot (e.g., an hour). Moreover,
since the transmission network constraints are taken into
account, the locational information of the service is also
captured. Then, we will introduce several key features of this
framework.

1) Flexibility Aggregator and Virtual Battery Model: Since
our flexibility market is considered at the transmission
level, we assume that at each load bus, there exists an
aggregator which represents the aggregate flexibility at
this bus by a virtual battery model [14], [15]. Basically,
the flexible load at each bus can be modeled by a battery
which is characterized by an energy capacity and the
charge/discharge rate limits. The detailed DR aggregation
method is beyond the scope of this paper.

2) Parametric DR bidding: For each aggregator, apart from
submitting the key parameters of its battery model, it
should also submit a parametric reward function [16],
[17] which is used for characterizing the remuneration
requested by the aggregator. The form of this parametric

reward function is defined by the market operator and
the aggregator only needs to choose several parameters.
Different from the simple bid consisting of a price-
quantity pair in a traditional market, in our framework,
the reward is a function of the actual flexibility accepted
by the market operator.

3) Market Clearing and Partial Acceptance: The market
clearing process is integrated into the traditional eco-
nomic dispatch problem where the objective is to min-
imize the summation of the total generation cost plus the
total payment of the MDF services for the aggregators.
One important feature of our clearing process is that the
flexibility bids can be partially accepted. This means that
only a portion of flexibility service can be accepted. In
contrast to a traditional DR market where a bid can either
be totally accepted or rejected, our market design will
definitely bring more flexibility to both the operator and
aggregators. Moreover, the actual payment is dependent
on the actual service that is accepted. Therefore, the
evaluation for the complex MDF services is solved by
this bidding-clearing process.

Many case studies are carried out to see how different
bidding parameters will influence the results of the market
clearing process. We find that for the same characteristics
of the virtual batteries and the same bidding parameters in
the reward function, the clearing results for the MDF bids at
different buses can be quite different. This will in turn give
some insights for the aggregators when they make their own
bidding strategies.

The rest of this paper is organized as follows. The paramet-
ric bidding model and the formulation of the market clearing
problem is introduced in Section II. Case studies are given in
Section III followed by a conclusion in Section IV.

II. PARAMETRIC BIDDING AND MARKET CLEARING

A. Parametric Bidding Model

Suppose we consider a transmission network with N buses
and denote the set of all the buses as N = {1, 2, · · · , N}.
Denote the set of those buses that will offer the MDF service
as F ⊆ N and the total time horizon is T = {1, 2, · · · , T}.
For some aggregator j ∈ F , the MDF bid consists of two
parts. The first part is related to the virtual battery model and
the main attributes are denoted as:

ψj =
(
t1j , t

2
j , P

min
j , Pmax

j , Emin
j , Emax

j , {Dj(t)}t∈[t1j ,t2j ]
)
.

In this bid, t1j ∈ T and t2j ∈ T define the user specified service
period [t1j , t

2
j ] where t1j ≤ t2j . The aggregator also needs to

submit its base load during the service period as a reference,
which is denoted as {Dj(t)}t∈[t1j ,t2j ]. Furthermore, Pmax

j ≤ 0

and Pmin
j ≥ 0 denote the maximal charging and discharging

rate of this battery, respectively. Additionally, Emin
j and Emax

j

denote the maximal net energy that can be stored into or
released from this battery, respectively. We should note that
here, both the storing and the releasing of energy is respective
to the base load. Therefore, suppose at time t, the base load is



Dj(t). Then, if we are charging an amount of ∆D > 0 energy
at this time slot, the actual load consumption is Dj(t)−∆D,
which means the load is decreased. In the similar way, if we
are discharging an amount of ∆D > 0 energy, the actual load
is Dj(t) + ∆D, which means the load is increased. Evidently,
if some energy storage devices are equipped at bus j, this
kind of operation can be easily realized. However, some other
loads can be modeled by this kind of virtual battery behavior
such as thermostatically controlled loads (TCLs) [15]. As we
have mentioned before, the market operator does not have to
choose between accepting this bid or rejecting it. In fact, it
can choose to accept only a portion of this bid. To be more
specific, for each ψj , four decision variables are associated
with it with respect to the operator and they are denoted
as: αj = (αP1

j , αP2
j , αE1

j , αE2
j ), which satisfy the following

constraints:

Pmin
j ≤ αP1

j ≤ 0 ≤ αP2
j ≤ Pmax

j , (1)

Emin
j ≤ αE1

j ≤ 0 ≤ αE2
j ≤ Emax

j . (2)

Besides the first part, the aggregator also needs to submit
a parametric reward function such that the actual payment
rj(αj) for the MDF service is a function of αj . A simple
example of the parametric reward function can be in linear
form:

rj(αj) = γPj (αP2
j − αP1

j ) + γEj (αE2
j − αE1

j ).

In this example, each aggregator only needs to submit two
parameters to the operator to evaluate the payment: γPj and
γEj , which are the linear coefficients for the power rating
limit and energy adjustment limit, respectively. We should
emphasize that the form of this parametric reward function is
defined by the operator for ease of clearing the MDF market
and it is not limited to a linear function. For example, it can
be a convex function of αj .

B. Market Clearing

Denote the set of the transmission lines as L and the set of
the generator buses as G. Suppose that at each time slot t, the
predicted load at bus i ∈ D is Di(t), where D is the set of load
buses. Note that when i ∈ F and t ∈ [t1i , t

2
i ], there is no need

to predict Di(t) since they are included in the bid submitted
by aggregator i. For the generator at bus i ∈ G at time t, we
assume that the generation cost is a quadratic function of the
generation output PGi

(t):

Ci(PGi
(t)) = aiPGi

(t)2 + biPGi
(t) + ci.

Suppose there are G number of generators, F number of
MDF aggregators and D number of load buses, then we can
define a generator connection matrix Hg ∈ RN×G such that
its (i, j)th element is 1 if and only if generator j is located
at bus i. Similarly, a load connection matrix Hd ∈ RN×D

and an aggregator connection matrix Hf ∈ RN×F are
defined such that their (i, j)th elements are 1 if and only
if load j or aggregator j is located at bus i, respectively.
Moreover, we denote the charging/discharging variable of

aggregator i at time t as Pfi(t) and the corresponding vector
as P f (t) = (Pf1(t), · · · , PfF (t))T , where the superscript T
is the transpose operator. Furthermore, the vector of PGi

(t)
and Di(t) are denoted as PG(t) = (PG1

(t), · · · , PGG
(t))T

and D(t) = (D1(t), · · · , DD(t)T ), respectively.
The day-ahead MDF market is cleared by solving the

following optimization problem:

minimize
PG,P f ,α

∑
t

∑
i∈G

Ci(PGi
(t)) +

∑
i∈F

ri(αi)

subject to
∑
i∈G

PGi
(t) =

∑
i∈D

Di(t)−
∑
i∈F

Pfi(t), (3a)

Pmin
G ≤ PG(t) ≤ Pmax

G , (3b)
|Γ(HgPG(t)−HdD(t)+HfP f (t))|≤fm, (3c)
Ei(0) = 0, (3d)

Ei(t+1)=Ei(t)+Pfi(t), i∈F , t=t1i , . . ., t2i , (3e)

αP1
i ≤ Pfi(t) ≤ αP2

i , i∈F , t=t1i , . . ., t2i , (3f)

αE1
i ≤ Ei(t) ≤ αE2

i , i∈F , t=t1i , . . ., t2i , (3g)

Pmin
i ≤ αP1

i ≤ 0 ≤ αP2
i ≤ Pmax

i , (3h)

Emin
i ≤ αE1

i ≤ 0 ≤ αE2
i ≤ Emax

i . (3i)

In the objective, the first term is the total generation cost
and the second term is the total MDF payment for all the
aggregators. Constraint (3a) is the power balance constraint
and (3b) requires that the output of each generator is within
a range, where Pmin

G and Pmax
G denote the vectors of the

lower and upper generation limits, respectively. In (3c), the
L × N matrix Γ denotes the matrix of the generation shift
factors where the (l, i)th element represents the change in the
real power flow in branch l given a unit increase in the power
injected at bus i [18]. Hence, the network line flow constraints
are accounted for in (3c), where fm denotes the vector of line
limits. Constrains (3d)–(3i) are for the virtual batteries of the
aggregators. To be specific, since the charging/discharging of
batteries are with respect to the base load, the initial energy
in the battery is zero as in (3d) and it can be increased or
decreased as in (3e) depending on whether the charging or
discharging decision is made. Constraints (3f) and (3g) are
the power and energy limits for the batteries, respectively, and
the limits αi can be determined after the market is cleared.
In addition, (3h) and (3i) allow the market operator to have a
partial acceptance of the MDF bids from all the aggregators.
When αP1

i = αP2
i = 0 and αE1

i = αE2
i = 0 for some i ∈ F ,

it means that the bid of aggregator i is rejected. After Problem
(3) is solved, the market operator can determine how much a
MDF bid will be accepted. The optimal dispatch of generators
as well as the accepted virtual batteries can also be determined.
Problem (3) is convex and hence, it can be solved efficiently
by commercial solvers such as CVX [19].

III. CASE STUDIES

In this section, we use a 6-bus transmission network [20]
as an example to implement our day-ahead MDF market.
Moreover, various case studies are carried out in order to find



Fig. 1. 6-bus transmission network.

TABLE I
GENERATOR DATA

Index Pmin
G (MW) Pmax

G (MW) a($/MW2h) b($/MWh) c($)
G1 40 220 0.03 7 100
G2 10 200 0.07 10 104
G3 0 25 0.05 8 110

TABLE II
NETWORK INFORMATION

From Bus To Bus X (p.u.) Flow Limit (MW)
1 2 0.170 60
1 4 0.258 70
2 3 0.037 190
2 4 0.197 200
3 6 0.018 180
4 5 0.037 190
5 6 0.140 180

TABLE III
TOTAL HOURLY LOAD OVER 24-H HORIZON

Hour D(MW) Hour D(MW) Hour D(MW)
1 175 9 185 17 256
2 169 10 202 18 247
3 165 11 228 19 246
4 155 12 236 20 237
5 155 13 242 21 237
6 165 14 244 22 233
7 173 15 249 23 210
8 174 16 256 24 210

how different MDF bids from the aggregators will influence
the result of the market clearing process.

A. 6-bus Transmission Network

The topology of the 6-bus system is shown is Fig. 1.
There are three generators located at Buses 1, 2 and 6,
respectively. The other three buses are load buses and every
load bus also has an aggregator to participate into the MDF
market. The percentage indicated in the figure at each load bus
represents the percentage of the power consumption at each
load with respect to the system’s total load. The characteristics
of generators, network information, and the total hourly load
over 24-h horizon are given in Tables I–III, respectively. The
power base is 100MVA.

For the three aggregators at the load buses, the values of

TABLE IV
MDF BIDS IN (P.U.)

Index t1j t2j Pmin
j Pmax

j Emin
j Emax

j

B3 13 19 -0.1 0.3 -0.3 0.5
B4 9 16 -0.1 0.3 -0.3 0.5
B5 16 23 -0.1 0.3 -0.3 0.5
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(a) Traditional economic dispatch
without MDF.
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(b) γPj = 50, γEj = 50, j = 3, 4, 5.
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(c) γPj =500, γEj =500, j=3, 4, 5.

Fig. 2. LMPs for load buses in three cases.

TABLE V
MDF CLEARING RESULTS

γPj = 50, γEj = 50 γPj = 500, γEj = 500

αP2
j αE2

j αP2
j αE2

j

B3 0.129 0.5 0.095 0.5
B4 0.179 0.5 0.134 0.5
B5 0.156 0.5 0.085 0.5

their bids (ψj) are given in p.u. in Table IV. We assume that
the characteristics of the virtual batteries are the same for all
the aggregators, except for their available service time. Next,
we will use different bidding values of α to see the clearing
result of the MDF market.

B. Market Clearing Result

In the first case, we solve the problem without any MDF
aggregator. Then Problem (3) is reduced to a traditional
economic dispatch problem. In the second case, the parameters
for the bidding reward functions are as follows: γP3 = γP4 =
γP5 = 50 and γE3 = γE4 = γE5 = 50. In the third case, we
increase both γPj and γEj by 10 times which means they are
all equal to 500. For these three cases, we compare the hourly
locational marginal prices (LMPs) at Buses 3, 4, and 5 in Fig.
2. Also, the cleared values of α are shown in Table V. Note
that the values of αP1

j and αE1
j are not shown. This is because

they are always equal to zero in our case studies. The reason
for this is because if they are not equal to zero, it means that
the system needs the virtual battery to discharge some energy,
which is equivalent to increasing the load. However, in our
current setting, increasing the load will not bring benefit to
the system. Nevertheless, these values may be nonzero when
the random generation outputs of RES (e.g., solar panels and
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(a) Cleared αE2 for different γE , with γP = 500.
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(b) Cleared αE2 for different γP , with γE = 2900.

Fig. 3. Cleared αE2 for different γP and γE .

wind turbines) are included. In that case, if the RES outputs are
much larger than the base load and the traditional generators
have ramping limits, then increasing the load by discharging
the virtual batteries will be beneficial to the system.

In Fig. 2(a), we observe that without MDF, the LMPs for the
load buses vary a lot between 10:00 to 23:00. This is due to the
large variation of loads and the peak-to-average ratio in load
demand is very high. In Fig. 2(b), Fig.2(c) and Table V, it can
be seen that in both cases, the accepted values of αE2

j for all
the three buses always reach their maximum values (i.e., 0.5).
This is reasonable because the payment for the load reduction
is much lower than the generation cost, so to accept all of
them will minimize the system cost. However, the accepted
power limits αP2

j decrease by 26.4%, 25.2% and 45.5% for
Buses 3, 4 and 5, respectively when the bidding parameters in
the reward function increase from 50 to 500. If we compare
the change of the LMPs in Fig. 2(b) and Fig. 2(c), it can be
noted that, for the same αE2

j , on the one hand, larger αP2
j can

flatten the LMPs very well, which is good since the variations
as well as the average values of LMPs are decreased. On the
other hand, smaller αP2

j can also reduce LMPs, but the effect
of flattening LMPs is much less than the previous case.

After analyzing how different bidding parameters in the
reward function can affect LMPs, next, we will show what
would be the difference of cleared values of αE2

j for the MDF
aggregators when they all have the same bidding parameters.
To be specific, firstly, we fix γP3 = γP4 = γP5 = 500
and change the value of γE from 2000 to 3600, where
γE = γE3 = γE4 = γE5 . The results for the cleared values
of αE2

j , j = 3, 4, 5 are shown in Fig. 3(a). It can be seen that
although the characteristics of the three virtual batteries and

the parameters in the reward functions are identical for all the
three buses, their cleared values of αE2

j are quite different
when γE is increased. In detail, they are all equal to the
maximum value (i.e., 0.5) when γE is smaller than 2360. As
γE is further increased, the cleared values of αE2

j for the
three buses decrease in a sequential manner. Bus 3 is the first
one whose αE2

j starts to decrease and it reaches zero even
when the other two buses still have the maximal αE2

j . This
shows that the MDF bid of Bus 3 is the least valuable one
among all the bids for the market operator. In contrast, the
cleared values of αE2

j of Buses 4 and 5 start to decrease when
γE is equal to 2860 and 2900, respectively. This means these
two buses have higher "bargaining power" in the market since
with higher bidding reward functions for the MDF services,
they can still be accepted by the market. Therefore, the results
of the market clearing process will reflect the true interest
and values of different MDF bids from the perspective of the
market operator. These different values of the MDF bids at
different buses can be related to many factors such as the
loads, locations and serving periods, etc.

Secondly, we fix γE3 = γE4 = γE5 = 2900 and change the
value of γP from 50 to 3000, where γP = γP3 = γP4 = γP5 .
The results for the cleared values of αE2

j , j = 3, 4, 5 are shown
in Fig. 3(b). It is noted that αE2

j decreases as γP increases.
This means that αE2

j is not only influenced by the bidding
parameters for the battery energy limits γEj , but it is also
affected by the bidding parameters for the power limits γPj .
As a result, when MDF aggregators submit bids to the market,
they should jointly make decisions on γPj and γEj , because if
any one of the two bidding parameters are not chosen in a
right way, it may result in that only a little portion of their
bids can be accepted.

IV. CONCLUSION

We have studied a day-ahead market for the MDF services
in the transmission network. Each MDF aggregator needs to
submit the characteristics of its virtual battery which repre-
sent the aggregate load flexibility. Also, a parametric reward
function which represents the expected payment should be
submitted at the same time. The market clearing process is
modeled by a convex optimization problem and a key feature
of this MDF market is that the partial acceptance of a bid
is allowed, which means that the system operator can accept
a portion of the bid instead of the whole. We find that this
MDF market can help flatten the LMPs across the peak load
period, and with the same energy adjustment capacity of the
virtual batteries, different power limits within a single time
slot can lead to different flattening effect to LMPs. Moreover,
we show that even if the MDF bids at different buses are
the same, the clearing results can be quite different, which
reflect the practical values of different load flexibilities from
the perspective of the system operator. Therefore, this market
can finally help the operator to have the optimal strategy of
accepting different MDF bids such that the system cost can be
minimized. As for the future work, we will further involve the
RES and the uncertainty of the load into our problem to see



how much benefit this MDF market can bring to the system
under the more complicated scenarios.
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